示例#1
0
def write_cloud(header,
                point_cloud,
                output_point_cloud_path,
                write_extra_dimensions=False):
    (h, scale, offset, evlrs, vlrs) = header

    # Open output file
    output_las_file = File(output_point_cloud_path,
                           mode='w',
                           header=h,
                           evlrs=evlrs,
                           vlrs=vlrs)

    if write_extra_dimensions:
        # Create new dimensions
        for name, dimension in point_cloud.extra_dimensions_metadata.items():
            output_las_file.define_new_dimension(
                name=name,
                data_type=dimension.get_las_type(),
                description="Dimension added by Ground Extend")

        # Assign dimension values
        for dimension_name, values in point_cloud.extra_dimensions.items():
            setattr(output_las_file, dimension_name, values)

    # Adapt points to scale and offset
    [x_scale, y_scale, z_scale] = scale
    [x_offset, y_offset, z_offset] = offset
    [x, y] = np.hsplit(point_cloud.xy, 2)
    output_las_file.X = (x.ravel() - x_offset) / x_scale
    output_las_file.Y = (y.ravel() - y_offset) / y_scale
    output_las_file.Z = (point_cloud.z - z_offset) / z_scale

    # Set color
    [red, green, blue] = np.hsplit(point_cloud.rgb, 3)
    output_las_file.red = red.ravel()
    output_las_file.green = green.ravel()
    output_las_file.blue = blue.ravel()

    # Set classification
    output_las_file.Classification = point_cloud.classification.astype(
        np.uint8)

    # Set header
    output_las_file.header.scale = scale
    output_las_file.header.offset = offset

    # Close files
    output_las_file.close()
def save_cloud(inFile, dir_out, filename, classif, conf):
    # Problème dans les données, certaines labels sont à 0
    label = inFile.classification
    ind = np.argwhere(label != 0)

    new_header = copy.copy(inFile.header)
    #Modification du point format id pour accéder au dimensions RGB
    new_header.data_format_id = 3
    #Create outfile
    outFile = dir_out + filename.replace('.laz', '_classify' + '.laz')
    outCloud = File(outFile,
                    mode="w",
                    header=new_header,
                    vlrs=inFile.header.vlrs)

    outCloud.define_new_dimension(name='classif',
                                  data_type=9,
                                  description="ntd")

    outCloud.define_new_dimension(name='conf', data_type=9, description="ntd")

    for dimension in inFile.point_format:
        if (dimension == inFile.point_format[13]):
            break
        dat = inFile.reader.get_dimension(dimension.name)[ind].reshape(-1)
        #        dat = dat[ind]
        outCloud.writer.set_dimension(dimension.name, dat)

    multiscale_features_raw = pd.DataFrame()
    features_raw = np.hstack([classif.reshape(-1, 1), conf.reshape(-1, 1)])
    features_raw = pd.DataFrame(features_raw)
    features_raw.columns = np.array(["classif", "conf"])
    multiscale_features_raw = pd.concat(
        [multiscale_features_raw, features_raw], axis=1)
    outCloud.classif = multiscale_features_raw.as_matrix(['classif']).ravel()
    outCloud.conf = multiscale_features_raw.as_matrix(['conf']).ravel()

    outCloud.close()
示例#3
0
def addI_currentfile(inFile):
    print 'Generating Importance value for %s' % str(inFile)

    outFile = File('localI.las', mode='w', header=inFile.header)

    outFile.define_new_dimension(name='gps_time',
                                 data_type=10,
                                 description='gps_time')

    for dimension in inFile.point_format:
        dat = inFile.reader.get_dimension(dimension.name)
        outFile.writer.set_dimension(dimension.name, dat)

    outFile.pt_src_id = [random.randint(0, 15) for _ in range(len(outFile))]

    outFile.gps_time = []

    for i in range(len(outFile.X)):
        outFile.importance_value.append(random.randomint(0, 15))

    closeLasFile(outFile)

    return "localI.las"
    point_cloud = point_cloud.loc[:, ~point_cloud.columns.duplicated()]

    #point_cloud.to_csv(input_file_path[:-4]+'_ascii.csv',sep=',',index=False,header=True)

    ########### Output ###########

    print("Outputting to las file")

    las_path_base = os.path.basename(input_file_path[:-4])

    out_filename = '%s_veg_classification_testparams.las' % (las_path_base)
    print(out_filename)
    out_LAS = File(out_filename, mode="w", header=in_LAS.header)

    out_LAS.define_new_dimension(name="delta_z" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    out_LAS.define_new_dimension(name="std_z" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    out_LAS.define_new_dimension(name="radius" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    out_LAS.define_new_dimension(name="density" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    out_LAS.define_new_dimension(name="norm_z" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    out_LAS.define_new_dimension(name="linearity" + "_" + str(k),
                                 data_type=9,