def __init__(self, corpus, config): super(SysPerfectBD2Gauss, self).__init__(config) self.vocab = corpus.vocab self.vocab_dict = corpus.vocab_dict self.vocab_size = len(self.vocab) self.bos_id = self.vocab_dict[BOS] self.eos_id = self.vocab_dict[EOS] self.pad_id = self.vocab_dict[PAD] self.bs_size = corpus.bs_size self.db_size = corpus.db_size self.y_size = config.y_size self.simple_posterior = config.simple_posterior self.embedding = None self.utt_encoder = RnnUttEncoder(vocab_size=self.vocab_size, embedding_dim=config.embed_size, feat_size=0, goal_nhid=0, rnn_cell=config.utt_rnn_cell, utt_cell_size=config.utt_cell_size, num_layers=config.num_layers, input_dropout_p=config.dropout, output_dropout_p=config.dropout, bidirectional=config.bi_utt_cell, variable_lengths=False, use_attn=config.enc_use_attn, embedding=self.embedding) self.c2z = nn_lib.Hidden2Gaussian(self.utt_encoder.output_size + self.db_size + self.bs_size, config.y_size, is_lstm=False) self.gauss_connector = nn_lib.GaussianConnector(self.use_gpu) self.z_embedding = nn.Linear(self.y_size, config.dec_cell_size) if not self.simple_posterior: self.xc2z = nn_lib.Hidden2Gaussian( self.utt_encoder.output_size * 2 + self.db_size + self.bs_size, config.y_size, is_lstm=False) self.decoder = DecoderRNN(input_dropout_p=config.dropout, rnn_cell=config.dec_rnn_cell, input_size=config.embed_size, hidden_size=config.dec_cell_size, num_layers=config.num_layers, output_dropout_p=config.dropout, bidirectional=False, vocab_size=self.vocab_size, use_attn=config.dec_use_attn, ctx_cell_size=config.dec_cell_size, attn_mode=config.dec_attn_mode, sys_id=self.bos_id, eos_id=self.eos_id, use_gpu=config.use_gpu, max_dec_len=config.max_dec_len, embedding=self.embedding) self.nll = NLLEntropy(self.pad_id, config.avg_type) self.gauss_kl = NormKLLoss(unit_average=True) self.zero = cast_type(th.zeros(1), FLOAT, self.use_gpu)
def __init__(self, corpus, config): super(GaussHRED, self).__init__(config) self.vocab = corpus.vocab self.vocab_dict = corpus.vocab_dict self.vocab_size = len(self.vocab) self.goal_vocab = corpus.goal_vocab self.goal_vocab_dict = corpus.goal_vocab_dict self.goal_vocab_size = len(self.goal_vocab) self.outcome_vocab = corpus.outcome_vocab self.outcome_vocab_dict = corpus.outcome_vocab_dict self.outcome_vocab_size = len(self.outcome_vocab) self.sys_id = self.vocab_dict[SYS] self.eos_id = self.vocab_dict[EOS] self.pad_id = self.vocab_dict[PAD] self.simple_posterior = config.simple_posterior self.goal_encoder = MlpGoalEncoder(goal_vocab_size=self.goal_vocab_size, k=config.k, nembed=config.goal_embed_size, nhid=config.goal_nhid, init_range=config.init_range) self.embedding = nn.Embedding(self.vocab_size, config.embed_size, padding_idx=self.pad_id) self.utt_encoder = RnnUttEncoder(vocab_size=self.vocab_size, embedding_dim=config.embed_size, feat_size=0, goal_nhid=config.goal_nhid, rnn_cell=config.utt_rnn_cell, utt_cell_size=config.utt_cell_size, num_layers=config.num_layers, input_dropout_p=config.dropout, output_dropout_p=config.dropout, bidirectional=config.bi_utt_cell, variable_lengths=False, use_attn=config.enc_use_attn, embedding=self.embedding) self.ctx_encoder = EncoderRNN(input_dropout_p=0.0, rnn_cell=config.ctx_rnn_cell, # input_size=self.utt_encoder.output_size+config.goal_nhid, input_size=self.utt_encoder.output_size, hidden_size=config.ctx_cell_size, num_layers=config.num_layers, output_dropout_p=config.dropout, bidirectional=config.bi_ctx_cell, variable_lengths=False) # mu and logvar projector self.c2z = nn_lib.Hidden2Gaussian(self.utt_encoder.output_size, config.y_size, is_lstm=False) self.gauss_connector = nn_lib.GaussianConnector(self.use_gpu) self.z_embedding = nn.Linear(config.y_size, config.dec_cell_size) if not self.simple_posterior: self.xc2z = nn_lib.Hidden2Gaussian(self.utt_encoder.output_size+self.ctx_encoder.output_size, config.y_size, is_lstm=False) self.decoder = DecoderRNN(input_dropout_p=config.dropout, rnn_cell=config.dec_rnn_cell, input_size=config.embed_size + config.goal_nhid, hidden_size=config.dec_cell_size, num_layers=config.num_layers, output_dropout_p=config.dropout, bidirectional=False, vocab_size=self.vocab_size, use_attn=config.dec_use_attn, ctx_cell_size=self.ctx_encoder.output_size, attn_mode=config.dec_attn_mode, sys_id=self.sys_id, eos_id=self.eos_id, use_gpu=config.use_gpu, max_dec_len=config.max_dec_len, embedding=self.embedding) self.nll = NLLEntropy(self.pad_id, config.avg_type) self.gauss_kl = criterions.NormKLLoss(unit_average=True) self.zero = utils.cast_type(th.zeros(1), FLOAT, self.use_gpu)