def test_graph_execution_optimizer_not_apply(self): port_a = self._dist_ut_port_0 port_b = self._dist_ut_port_1 node_a = { "PADDLE_TRAINER_ID": "0", "PADDLE_CURRENT_ENDPOINT": "127.0.0.1:{}".format(port_a), "PADDLE_TRAINERS_NUM": "2", "PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:{},127.0.0.1:{}".format(port_a, port_b), "http_proxy": "", "https_proxy": "" } node_b = { "PADDLE_TRAINER_ID": "1", "PADDLE_CURRENT_ENDPOINT": "127.0.0.1:{}".format(port_b), "PADDLE_TRAINERS_NUM": "2", "PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:{},127.0.0.1:{}".format(port_a, port_b), "http_proxy": "", "https_proxy": "" } def node_func(): import paddle.distributed.fleet as fleet fleet.init(is_collective=True) input_x = paddle.fluid.layers.data( name="x", shape=[32], dtype='float32') input_y = paddle.fluid.layers.data( name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy( input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) strategy = paddle.distributed.fleet.DistributedStrategy() optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer( optimizer, strategy=strategy) optimizer.minimize(avg_cost) exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace()) exe.run(paddle.fluid.default_startup_program()) proc_a = launch_func(node_func, node_a) proc_a.start() proc_b = launch_func(node_func, node_b) proc_b.start() wait([proc_a, proc_b])
def test_graph_execution_optimizer(self): node_a = { "PADDLE_TRAINER_ID": "0", "PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36001", "PADDLE_TRAINERS_NUM": "2", "PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002", "http_proxy": "", "https_proxy": "" } node_b = { "PADDLE_TRAINER_ID": "1", "PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36002", "PADDLE_TRAINERS_NUM": "2", "PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002", "http_proxy": "", "https_proxy": "" } def node_func(): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) input_x = paddle.fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy(input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) strategy = paddle.distributed.fleet.DistributedStrategy() strategy.nccl_comm_num = 2 strategy.sync_nccl_allreduce = True optimizer = paddle.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace()) exe.run(paddle.fluid.default_startup_program()) import numpy as np def gen_data(): return { "x": np.random.random(size=(128, 32)).astype('float32'), "y": np.random.randint(2, size=(128, 1)).astype('int64') } for i in range(5): cost_val = exe.run(feed=gen_data(), fetch_list=[avg_cost.name]) print("cost of step[{}] = {}".format(i, cost_val)) # rank 1 proc_b = launch_func(node_func, node_b) proc_b.start() # rank 0, for wait server ready coverage # just for coverage for key in node_a: os.environ[key] = node_a[key] node_func() proc_b.join()
def test_graph_execution_optimizer(self): port_a = self._dist_ut_port_0 + 2 port_b = self._dist_ut_port_1 + 2 node_a = { "PADDLE_TRAINER_ID": "0", "PADDLE_CURRENT_ENDPOINT": "127.0.0.1:{}".format(port_a), "PADDLE_TRAINERS_NUM": "2", "PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:{},127.0.0.1:{}".format(port_a, port_b), "http_proxy": "", "https_proxy": "" } node_b = { "PADDLE_TRAINER_ID": "1", "PADDLE_CURRENT_ENDPOINT": "127.0.0.1:{}".format(port_b), "PADDLE_TRAINERS_NUM": "2", "PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:{},127.0.0.1:{}".format(port_a, port_b), "http_proxy": "", "https_proxy": "" } def node_func(): import paddle.distributed.fleet as fleet fleet.init(is_collective=True) input_x = paddle.fluid.layers.data( name="x", shape=[32], dtype='float32') input_y = paddle.fluid.layers.data( name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy( input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) strategy = paddle.distributed.fleet.DistributedStrategy() strategy.nccl_comm_num = 2 strategy.sync_nccl_allreduce = True optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer( optimizer, strategy=strategy) optimizer.minimize(avg_cost) exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace()) exe.run(paddle.fluid.default_startup_program()) import numpy as np def gen_data(): return { "x": np.random.random(size=(128, 32)).astype('float32'), "y": np.random.randint( 2, size=(128, 1)).astype('int64') } for i in range(10): cost_val = exe.run(feed=gen_data(), fetch_list=[avg_cost.name]) print("cost of step[{}] = {}".format(i, cost_val)) proc_a = launch_func(node_func, node_a) proc_a.start() proc_b = launch_func(node_func, node_b) proc_b.start() wait([proc_a, proc_b])