from layer.core import * from algorithm.SGD import Mini_Batch from data.process import loadData, loadScaleData from layer.model import Model if __name__ == '__main__': dataSet=loadScaleData('data.pkl') cifar=Model(batch_size=100,lr=0.01,dataSet=dataSet,weight_decay=0.0) neure=[1000,1000,1000] batch_size=100 cifar.add(DataLayer(batch_size,32*32*3)) cifar.add(FullyConnectedLayer(32*32*3,neure[0],'relu','Gaussian',0.1)) cifar.add(DropoutLayer(0.2)) cifar.add(FullyConnectedLayer(neure[0],neure[1],'relu','Gaussian',0.1)) cifar.add(DropoutLayer(0.2)) cifar.add(FullyConnectedLayer(neure[1],neure[2],'relu','Gaussian',0.1)) cifar.add(DropoutLayer(0.2)) cifar.add(SoftmaxLayer(neure[2],10)) cifar.pretrain() cifar.build_train_fn() cifar.build_vaild_fn() algorithm=Mini_Batch(model=cifar,n_epochs=100,load_param='mlp_params.pkl',save_param='mlp_params.pkl') algorithm.run()
from layer.core import * from algorithm.SGD import Mini_Batch from data.process import loadData, loadScaleData from layer.model import Model if __name__ == '__main__': dataSet=loadScaleData('data.pkl') cifar=Model(batch_size=100,lr=0.005,dataSet=dataSet,weight_decay=0.0) neure=[1000,1000,1000] batch_size=100 cifar.add(DataLayer(batch_size,32*32*3)) cifar.add(AutoEncodeLayer(32*32*3,neure[0],'relu','softplus',cost='squre',weight_init='Gaussian',gauss_std=0.1,level=0.3)) cifar.add(DropoutLayer(0.2)) cifar.add(SoftmaxLayer(neure[0],10)) cifar.pretrain(batch_size=20,n_epoches=15) cifar.build_train_fn() cifar.build_vaild_fn() algorithm=Mini_Batch(model=cifar,n_epochs=100,load_param='',save_param='mlp_params.pkl') algorithm.run()