def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name) as scope: rois, rpn_scores = proposal_layer_tf(rpn_cls_prob, rpn_bbox_pred, self._im_info, self._feat_stride, self._anchors, self._num_anchors) rois.set_shape([None, 6]) rpn_scores.set_shape([None, 1]) rpn_scores = tf.to_float(rpn_scores) return rois, rpn_scores
def _proposal_layer(rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name) as scope: rois, rpn_scores = proposal_layer_tf(rpn_cls_prob, rpn_bbox_pred, imgsize_placeholder, mode, feat_stride, anchors, num_anchors) rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return rois, rpn_scores
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: rois, rpn_scores = proposal_layer_tf(rpn_cls_prob,rpn_bbox_pred,self._im_info,self._mode,self._feat_stride, self._anchors,self._num_anchors) #筛选超越边界的候选框,进行nms处理,得到前6k个候选框 else: rois, rpn_scores = tf.py_func(proposal_layer,[rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors], [tf.float32, tf.float32], name="proposal") rois.set_shape([None, 5]) #[w*h*9,5] rpn_scores.set_shape([None, 1]) #[w*h*9,1] return rois, rpn_scores
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): # 生成rois,roi_scores with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: rois, rpn_scores = proposal_layer_tf( rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors) else: rois, rpn_scores = tf.py_func(proposal_layer, [ rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors ], [tf.float32, tf.float32], name='proposal') rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return rois, rpn_scores
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): '''given rpn classification prob and bbox offset prediction to get 2000 rois''' with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: rois, rpn_scores = proposal_layer_tf( rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors) else: rois, rpn_scores = tf.py_func(proposal_layer, [ rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors ], [tf.float32, tf.float32], name="proposal") rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return rois, rpn_scores
def _proposal_layer(inputs): build_rpn_cls_prob, build_rpn_bbox_pred, build_anchors, im_info = inputs im_info = im_info[0] with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: rois, rpn_scores = proposal_layer_tf( build_rpn_cls_prob, build_rpn_bbox_pred, im_info, self._mode, self._feat_stride, build_anchors, self._num_anchors) else: rois, rpn_scores = tf.py_func(proposal_layer, [ build_rpn_cls_prob, build_rpn_bbox_pred, im_info, self._mode, self._feat_stride, build_anchors, self._num_anchors ], [tf.float32, tf.float32], name="proposal") rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return [rois, rpn_scores]
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: rois, rpn_scores = proposal_layer_tf( rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors ) else: rois, rpn_scores = tf.py_func(proposal_layer, [rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors], [tf.float32, tf.float32], name="proposal") rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return rois, rpn_scores
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: #筛选出大约2k个预测的候选框 rois, rpn_scores = proposal_layer_tf( rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors ) else: rois, rpn_scores = tf.py_func(proposal_layer, [rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors], [tf.float32, tf.float32], name="proposal") rois.set_shape([None, 5]) #(2k,5):[0,x1,y1,x2,y2] rpn_scores.set_shape([None, 1]) #(2k,1) return rois, rpn_scores
def _proposal_layer(self, rpn_cls_prob, rpn_bbox_pred, name): """ # get anchor score and coor, anchors filter,mns提取rois :param rpn_cls_prob: :param rpn_bbox_pred: :param name: :return: """ with tf.variable_scope(name) as scope: if cfg.USE_E2E_TF: rois, rpn_scores = proposal_layer_tf( rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors) else: rois, rpn_scores = tf.py_func(proposal_layer, [ rpn_cls_prob, rpn_bbox_pred, self._im_info, self._mode, self._feat_stride, self._anchors, self._num_anchors ], [tf.float32, tf.float32], name="proposal") rois.set_shape([None, 5]) rpn_scores.set_shape([None, 1]) return rois, rpn_scores