示例#1
0
    def __init__(self, phase, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)

        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = 512

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        # fused conv4_3 and conv5_3
        self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 1)
        self.conv4_3 = nn.Conv2d(512, 512, 3, 1, 1)
        self.deconv = nn.ConvTranspose2d(512, 512, 2, 2)
        self.deconv2 = nn.ConvTranspose2d(512, 256, 2, 2)
        self.conv5_3 = nn.Conv2d(512, 512, 3, 1, 1)
        self.L2Norm5_3 = L2Norm(512, 10)
        self.L2Norm3_3 = L2Norm(256, 20)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if self.phase == 'test':
            self.softmax = nn.Softmax()
            self.detect = Detect(num_classes, 0, 300, 0.01, 0.45)
示例#2
0
    def __init__(self, phase, size, num_classes):
        super(S3FD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.size = size

        vgg_cfg = [
            64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
            512, 512, 512
        ]
        self.vgg = nn.ModuleList(vgg(vgg_cfg, 3))

        extras_cfg = [256, 'S', 512, 128, 'S', 256]
        self.extras = nn.ModuleList(add_extras(extras_cfg, 1024))

        self.conv3_3_L2Norm = L2Norm(256, 10)
        self.conv4_3_L2Norm = L2Norm(512, 8)
        self.conv5_3_L2Norm = L2Norm(512, 5)

        self.loc, self.conf = self.multibox(self.num_classes)

        if self.phase == 'test':
            self.softmax = nn.Softmax(dim=-1)

        if self.phase == 'train':
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    if m.bias is not None:
                        nn.init.xavier_normal_(m.weight.data)
                        m.bias.data.fill_(0.02)
                    else:
                        m.weight.data.normal_(0, 0.01)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
示例#3
0
    def __init__(self, phase, base, head, num_classes):
        super(MSC, self).__init__()
        self.phase = phase
        self.num_classes = num_classes

        self.priorbox = PriorBox(v2)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = 512
        self.vgg = nn.ModuleList(base)

        self.L2Norm4_3 = L2Norm(512, 20)
        self.L2Norm5_3 = L2Norm(512, 10)

        self.deconv7 = nn.ConvTranspose2d(2048, 2048, 2, 2)
        self.deconv6 = nn.ConvTranspose2d(2048, 512, 2, 2)
        self.deconv5 = nn.ConvTranspose2d(512, 512, 2, 2)
        self.conv_fc6 = nn.Conv2d(2048, 2048, 3, 1, 1)
        self.conv5_3 = nn.Conv2d(512, 512, 3, 1, 1)
        self.conv4_3 = nn.Conv2d(512, 512, 3, 1, 1)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if self.phase == 'test':
            self.softmax = nn.Softmax()
            self.detect = Detect(num_classes, 0, 300, 0.01, 0.45)
示例#4
0
    def __init__(self, phase, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)
        # PyTorch 1.5.1
        # self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.priors = self.priorbox.forward()
        self.size = 300

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            # PyTorch 1.5.1
            # self.softmax = nn.Softmax()
            # self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect()
    def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = {
            'num_classes': 21,
            'lr_steps': (80000, 100000, 120000),
            'max_iter': 120000,
            'feature_maps': [38, 19, 10, 5, 3, 1],
            'min_dim': 300,
            'steps': [8, 16, 32, 64, 100, 300],
            'min_sizes': [30, 60, 111, 162, 213, 264],
            'max_sizes': [60, 111, 162, 213, 264, 315],
            'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
            'variance': [0.1, 0.2],
            'clip': True,
            'name': 'VOC',
        }
        self.priorbox = PriorBox(self.cfg)

        with torch.no_grad():
            self.priors = Variable(self.priorbox.forward())
        self.size = size

        # SSD network
        self.vgg = nn.ModuleList(base)
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
示例#6
0
    def __init__(self, phase, size, num_classes):
        super(S3FD_FairNAS_B, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.size = size
        self.base_net = FairNasB().features
        self.source_layer_indexes = [
            GraphPath(8, 'conv', 3),
            GraphPath(16, 'conv', 3),
            22,
        ]
        # print(self.base_net)

        self.extras = nn.ModuleList([
            InvertedResidual(1280, 512, stride=2, expand_ratio=0.2),
            InvertedResidual(512, 256, stride=2, expand_ratio=0.25),
            InvertedResidual(256, 256, stride=2, expand_ratio=0.5)
        ])

        # self.expand = InvertedResidual(120, 192, stride=1, expand_ratio=1)

        self.conv3_3_L2Norm = L2Norm(120, 10)
        self.conv4_3_L2Norm = L2Norm(576, 8)
        self.conv5_3_L2Norm = L2Norm(1280, 5)

        self.loc, self.conf = self.multibox(self.num_classes)

        if self.phase == 'test':
            self.softmax = nn.Softmax(dim=-1)

        if self.phase == 'train':
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    if m.bias is not None:
                        nn.init.xavier_normal_(m.weight.data)
                        m.bias.data.fill_(0.02)
                    else:
                        m.weight.data.normal_(0, 0.01)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
示例#7
0
    def __init__(self, phase, size, num_classes):
        super().__init__()
        self.fo = 64
        self.fi = 512
        self.arch = 'resnet18'
        self.phase = phase
        self.num_classes = num_classes
        self.base = getattr(models, self.arch)(pretrained=False)

        self.featuremap = nn.ModuleList([
            self.base.layer2, self.base.layer3, self.base.layer4,
            self.base._make_layer(BasicBlock, self.fi, self.fo, stride=2),
            self.base._make_layer(BasicBlock, self.fo, self.fo, stride=2),
            self.base._make_layer(BasicBlock, self.fo, self.fo, stride=2)
        ])

        self.conv2_2_L2Norm = L2Norm(128, 10)
        self.conv3_2_L2Norm = L2Norm(256, 8)
        self.conv4_2_L2Norm = L2Norm(512, 5)

        self.loc, self.conf = self.multibox(self.num_classes)

        if self.phase == 'test':
            self.softmax = nn.Softmax(dim=-1)

        # we load pretrained model from outside
        if self.phase == 'train':
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    if m.bias is not None:
                        nn.init.xavier_normal_(m.weight.data)
                        m.bias.data.fill_(0.02)
                    else:
                        m.weight.data.normal_(0, 0.01)
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
    def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = VOC_300_1
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax()
    def __init__(self, base, extras, head, num_classes, ver):
        super(Sph_SSD, self).__init__()

        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = SphPriorBox(ver)
        with torch.no_grad():
            self.priors = self.priorbox.forward().cuda()
            self.num_priors = self.priors.size(0)
            self.size = 512

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        self.softmax = nn.Softmax(dim=1).cuda()
    def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = voc  # (coco, voc)[num_classes == 21]
        self.priorbox = PriorBox(self.cfg)
        self.priors = self.priorbox.forward(
        )  # Generate default boxes (anchors)
        self.size = size

        # SSD network
        self.vgg = nn.ModuleList(base)

        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)

        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
示例#11
0
    def __init__(self, opts, phase, num_classes, base, extras, head):
        super(SSD, self).__init__()
        self.opts = opts
        self.phase = phase
        self.num_classes = num_classes
        self.priorbox = PriorBox(opts.prior_config, opts.ssd_dim)

        # for ssd300, priors: [8732 x 4] boxes/anchors
        self.priors = Variable(self.priorbox.forward(), volatile=True)

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax()
            # num_classes, bkg_label, top_k, conf_thresh, nms_thresh
            self.detect = Detect(num_classes, 0, opts.top_k, opts.conf_thresh,
                                 opts.nms_thresh, opts.soft_nms)
示例#12
0
    def __init__(self, phase, size, base, extras, head, num_classes,resnet18):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = VOC_300_2
        # self.priorbox = PriorBox(self.cfg)
        # self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        self.conv1 = resnet18.conv1
        self.bn1 = resnet18.bn1
        self.relu = resnet18.relu
        self.maxpool = resnet18.maxpool
        self.layer1 = resnet18.layer1
        self.layer2 = resnet18.layer2
        self.layer3 = resnet18.layer3
        self.layer4 = resnet18.layer4
        # self.vgg = nn.ModuleList(base)

        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(256, 20)
        self.L2Norm2 = L2Norm(512, 20)

        self.upsample_300_10_19 = torch.nn.UpsamplingBilinear2d(size=(19,19))
        self.upsample_300_3_5 = torch.nn.UpsamplingBilinear2d(size=(5,5))
        self.upsample_512_16_32= torch.nn.UpsamplingBilinear2d(size=(32,32))
        self.upsample_512_4_8 = torch.nn.UpsamplingBilinear2d(size=(8,8))
        self.upsample_512_4_6 = torch.nn.UpsamplingBilinear2d(size=(6,6))
        
        self.vgg1 = nn.ModuleList(base[0])
        self.vgg2 = nn.ModuleList(base[1])
        #self.vgg3 = nn.ModuleList(base[2])
        #self.vgg4 = nn.ModuleList(base[3])
        self.vgg5 = nn.ModuleList(base[4])
        self.vgg6 = nn.ModuleList(base[5])
        self.vgg7 = nn.ModuleList(base[6])
        self.vgg8 = nn.ModuleList(base[7])
        self.de1 = nn.ModuleList(base[8])
        self.de2 = nn.ModuleList(base[9])
        self.de3 = nn.ModuleList(base[10])
        self.de4 = nn.ModuleList(base[11])

        self.d19sample1 = nn.Sequential(
            nn.Conv2d(1024, 64, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(64), nn.ReLU(inplace=True))
        self.d19sample2 = nn.Sequential(
            nn.Conv2d(1024, 64, kernel_size=1, stride=2, bias=False),
            nn.BatchNorm2d(64), nn.ReLU(inplace=True))
        self.d19sample3 = nn.Sequential(
            nn.Conv2d(1024, 64, kernel_size=2, stride=4, bias=False),
            nn.BatchNorm2d(64), nn.ReLU(inplace=True))

        self.ds38_19 = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=(1, 1), stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        self.ds19_10 = nn.Sequential(
            nn.Conv2d(1024, 128, kernel_size=(1, 1), stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        self.ds10_5 = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=(1, 1), stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        self.ds5_3 = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=(1, 1), stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        '''
        self.de5_19 = nn.Sequential(
            nn.ConvTranspose2d(512, 512, kernel_size=3, stride=4, padding=0, output_padding=0),
            nn.BatchNorm2d(512),
            nn.Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1)),
            nn.BatchNorm2d(1024),
            nn.ReLU(inplace=True))
        
        self.de10_38 = nn.Sequential(
            nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=0),
            nn.BatchNorm2d(256),
            nn.ConvTranspose2d(256, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.BatchNorm2d(256),
            nn.Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        '''
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])
        self.con_press38= nn.Sequential(nn.Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)),
                                      nn.BatchNorm2d(128))
        '''
        self.con_press19 = nn.Sequential(nn.Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1)),
                                         nn.BatchNorm2d(128))
        self.con_press10 = nn.Sequential(nn.Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)),
                                         nn.BatchNorm2d(128))
        '''
        if phase == 'test':
            self.softmax = nn.Softmax()
示例#13
0
    def __init__(self, phase, size, base, extras, head, num_classes, resnet18):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = VOC_300_2
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        self.conv1 = resnet18.conv1
        self.bn1 = resnet18.bn1
        self.relu = resnet18.relu
        self.maxpool = resnet18.maxpool
        self.layer1 = resnet18.layer1
        self.layer2 = resnet18.layer2
        self.layer3 = resnet18.layer3
        self.layer4 = resnet18.layer4
        # self.vgg = nn.ModuleList(base)

        # Layer learns to scale the l2 normalized features from conv4_3

        self.L2Norm2 = L2Norm(512, 20)

        self.vgg1 = nn.ModuleList(base[0])
        self.vgg2 = nn.ModuleList(base[1])
        # self.vgg3 = nn.ModuleList(base[2])
        # self.vgg4 = nn.ModuleList(base[3])


        '''
        self.de5_19 = nn.Sequential(
            nn.ConvTranspose2d(512, 512, kernel_size=3, stride=4, padding=0, output_padding=0),
            nn.BatchNorm2d(512),
            nn.Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1)),
            nn.BatchNorm2d(1024),
            nn.ReLU(inplace=True))

        self.de10_38 = nn.Sequential(
            nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=0),
            nn.BatchNorm2d(256),
            nn.ConvTranspose2d(256, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.BatchNorm2d(256),
            nn.Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True))
        '''
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        #self.con_press1 = nn.Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1))
        self.con_press2 = nn.Sequential(nn.Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)),
                                        nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1)),
                                        nn.ReLU(inplace=True))
        '''
        self.con_press19 = nn.Sequential(nn.Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1)),
                                         nn.BatchNorm2d(128))
        self.con_press10 = nn.Sequential(nn.Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)),
                                         nn.BatchNorm2d(128))
        '''
        if phase == 'test':
            self.softmax = nn.Softmax()
    def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(cfg["640_480_base512"])
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        self.vgg = nn.ModuleList(base)

        self.L2Norm1 = L2Norm(512, 20)
        self.L2Norm2 = L2Norm(512, 20)
        self.L2Norm3 = L2Norm(1024, 20)
        self.extras = nn.ModuleList(extras)
        self.conv_1 = nn.ModuleList(head[0])
        self.conv_2 = nn.ModuleList(head[1])
        self.conv_3 = nn.ModuleList(head[2])
        self.conv_4 = nn.ModuleList(head[3])
        self.loc = nn.ModuleList(head[4])
        self.conf = nn.ModuleList(head[5])
        self.loc_vis = nn.ModuleList(head[6])
        self.conf_vis = nn.ModuleList(head[7])

        if self.phase == 'test':
            self.softmax1 = nn.Softmax()
            self.softmax2 = nn.Softmax()
            self.detect_seg = DetectSeg(num_classes, self.size, 0, 600, 0.0001, 0.55)
            self.detect_vis = Detect_v(num_classes, self.size, 0, 600, 0.0001, 0.55)

        self.score_fr = nn.Conv2d(1024, 1024, 1)
        self.score_pool3 = nn.Conv2d(256, 1024, 1)
        self.score_pool4 = nn.Conv2d(512, 1024, 1)
        self.upscore8 = nn.ConvTranspose2d(
            1024, self.num_classes,
            16, stride=8, padding=4, bias=False)
        self.upscore_pool4 = nn.ConvTranspose2d(
            1024, 1024,
            4, stride=2, padding=1, bias=False)


        self.score_fr_vis = nn.Conv2d(1024, 1024, 1)
        self.score_pool3_vis = nn.Conv2d(256, 1024, 1)
        self.score_pool4_vis = nn.Conv2d(512, 1024, 1)

        self.upscore8_vis = nn.ConvTranspose2d(
            1024, self.num_classes,
            16, stride=8, padding=4, bias=False)

        self.upscore_pool4_vis = nn.ConvTranspose2d(
            1024, 1024,
            4, stride=2, padding=1, bias=False)

        self.upscore16 = nn.ConvTranspose2d(
            1024, self.num_classes,
            (32,32), stride=16, padding=8, bias=False)

        self.upscore16_vis = nn.ConvTranspose2d(
            1024, self.num_classes,
            (32,32), stride=16, padding=8, bias=False)

        self.resume_channel = nn.Conv2d(1024, 512, 1)
        self.downscale_8_16 = nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1)
        self.resume_channel_vis = nn.Conv2d(1024, 512, 1)
        self.downscale_8_16_vis = nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1)
示例#15
0
    def __init__(self, num_classes, size, use_refine=True):

        super(RefineDet, self).__init__()
        self.num_classes = num_classes
        self.size = size
        # SSD network
        #self.base =  get_vgg16_fms(fm_ids=[22,29,34], pool5=True, conv6_dilation=3)
        self.base = get_vgg16_fms(fm_ids=[22, 29, 34], pool5=True)
        self.use_refine = use_refine
        self.L2Norm_4_3 = L2Norm(512, 10)
        self.L2Norm_5_3 = L2Norm(512, 8)
        self.last_layer_trans = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True))

        self.extras = nn.Sequential(nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), \
                                    nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), nn.ReLU(inplace=True))

        if use_refine:
            self.arm_loc = nn.ModuleList([nn.Conv2d(512, 12, kernel_size=3, stride=1, padding=1), \
                                          nn.Conv2d(512, 12, kernel_size=3, stride=1, padding=1), \
                                          nn.Conv2d(1024, 12, kernel_size=3, stride=1, padding=1), \
                                          nn.Conv2d(512, 12, kernel_size=3, stride=1, padding=1), \
                                          ])
            self.arm_conf = nn.ModuleList([nn.Conv2d(512, 6, kernel_size=3, stride=1, padding=1), \
                                           nn.Conv2d(512, 6, kernel_size=3, stride=1, padding=1), \
                                           nn.Conv2d(1024, 6, kernel_size=3, stride=1, padding=1), \
                                           nn.Conv2d(512, 6, kernel_size=3, stride=1, padding=1), \
                                           ])

        self.odm_loc = nn.ModuleList([nn.Conv2d(256, 12, kernel_size=3, stride=1, padding=1), \
                                      nn.Conv2d(256, 12, kernel_size=3, stride=1, padding=1), \
                                      nn.Conv2d(256, 12, kernel_size=3, stride=1, padding=1), \
                                      nn.Conv2d(256, 12, kernel_size=3, stride=1, padding=1), \
                                      ])

        self.odm_conf = nn.ModuleList([nn.Conv2d(256, 3*num_classes, kernel_size=3, stride=1, padding=1), \
                                       nn.Conv2d(256, 3*num_classes, kernel_size=3, stride=1, padding=1), \
                                       nn.Conv2d(256, 3*num_classes, kernel_size=3, stride=1, padding=1), \
                                       nn.Conv2d(256, 3*num_classes, kernel_size=3, stride=1, padding=1), \
                                       ])

        self.trans_layers = nn.ModuleList([nn.Sequential(nn.Conv2d(1024, 256, kernel_size=3, stride=1, padding=1),
                                                         nn.ReLU(inplace=True),
                                                         nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)), \
                                           nn.Sequential(nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
                                                         nn.ReLU(inplace=True),
                                                         nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)), \
                                           nn.Sequential(nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
                                                         nn.ReLU(inplace=True),
                                                         nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)), \
                                           ])
        self.up_layers = nn.ModuleList([
            nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2, padding=0),
            nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2, padding=0),
            nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2, padding=0),
        ])
        self.latent_layrs = nn.ModuleList([
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
        ])

        self.softmax = nn.Softmax()