def __init__(self, numpy_rng, theano_rng=None, cfg = None, # the network configuration dnn_shared = None, shared_layers=[], input = None): self.layers = [] self.params = [] self.delta_params = [] self.cfg = cfg self.n_ins = cfg.n_ins; self.n_outs = cfg.n_outs self.hidden_layers_sizes = cfg.hidden_layers_sizes self.hidden_layers_number = len(self.hidden_layers_sizes) self.activation = cfg.activation self.do_maxout = cfg.do_maxout; self.pool_size = cfg.pool_size self.max_col_norm = cfg.max_col_norm self.l1_reg = cfg.l1_reg self.l2_reg = cfg.l2_reg self.non_updated_layers = cfg.non_updated_layers if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data if input == None: #TODO CHANGE BACK self.x = T.matrix('x') else: self.x = input self.y = T.matrix('y') for i in xrange(self.hidden_layers_number): # construct the hidden layer if i == 0: input_size = self.n_ins layer_input = self.x else: input_size = self.hidden_layers_sizes[i - 1] layer_input = self.layers[-1].output W = None; b = None if (i in shared_layers) : W = dnn_shared.layers[i].W; b = dnn_shared.layers[i].b if self.do_maxout == True: hidden_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=self.hidden_layers_sizes[i] * self.pool_size, W = W, b = b, activation = (lambda x: 1.0*x), do_maxout = True, pool_size = self.pool_size) else: hidden_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=self.hidden_layers_sizes[i], W = W, b = b, activation=self.activation) # add the layer to our list of layers self.layers.append(hidden_layer) # if the layer index is included in self.non_updated_layers, parameters of this layer will not be updated if (i not in self.non_updated_layers): self.params.extend(hidden_layer.params) self.delta_params.extend(hidden_layer.delta_params) # We now need to add a logistic layer on top of the MLP self.regLayer = Regression( input= self.layers[-1].output if self.hidden_layers_number>0 else self.x, n_in=self.hidden_layers_sizes[-1] if self.hidden_layers_number>0 else self.n_ins, n_out=self.n_outs) #print self.hidden_layers_sizes[-1] #print self.n_outs if self.n_outs > 0: self.layers.append(self.regLayer) self.params.extend(self.regLayer.params) self.delta_params.extend(self.regLayer.delta_params) # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.regLayer.negative_log_likelihood(self.y) self.errors = self.finetune_cost if self.l1_reg is not None: for i in xrange(self.hidden_layers_number): W = self.layers[i].W self.finetune_cost += self.l1_reg * (abs(W).sum()) if self.l2_reg is not None: for i in xrange(self.hidden_layers_number): W = self.layers[i].W self.finetune_cost += self.l2_reg * T.sqr(W).sum()
class DNN_REG(object): def __init__(self, numpy_rng, theano_rng=None, cfg = None, # the network configuration dnn_shared = None, shared_layers=[], input = None): self.layers = [] self.params = [] self.delta_params = [] self.cfg = cfg self.n_ins = cfg.n_ins; self.n_outs = cfg.n_outs self.hidden_layers_sizes = cfg.hidden_layers_sizes self.hidden_layers_number = len(self.hidden_layers_sizes) self.activation = cfg.activation self.do_maxout = cfg.do_maxout; self.pool_size = cfg.pool_size self.max_col_norm = cfg.max_col_norm self.l1_reg = cfg.l1_reg self.l2_reg = cfg.l2_reg self.non_updated_layers = cfg.non_updated_layers if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data if input == None: #TODO CHANGE BACK self.x = T.matrix('x') else: self.x = input self.y = T.matrix('y') for i in xrange(self.hidden_layers_number): # construct the hidden layer if i == 0: input_size = self.n_ins layer_input = self.x else: input_size = self.hidden_layers_sizes[i - 1] layer_input = self.layers[-1].output W = None; b = None if (i in shared_layers) : W = dnn_shared.layers[i].W; b = dnn_shared.layers[i].b if self.do_maxout == True: hidden_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=self.hidden_layers_sizes[i] * self.pool_size, W = W, b = b, activation = (lambda x: 1.0*x), do_maxout = True, pool_size = self.pool_size) else: hidden_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=self.hidden_layers_sizes[i], W = W, b = b, activation=self.activation) # add the layer to our list of layers self.layers.append(hidden_layer) # if the layer index is included in self.non_updated_layers, parameters of this layer will not be updated if (i not in self.non_updated_layers): self.params.extend(hidden_layer.params) self.delta_params.extend(hidden_layer.delta_params) # We now need to add a logistic layer on top of the MLP self.regLayer = Regression( input= self.layers[-1].output if self.hidden_layers_number>0 else self.x, n_in=self.hidden_layers_sizes[-1] if self.hidden_layers_number>0 else self.n_ins, n_out=self.n_outs) #print self.hidden_layers_sizes[-1] #print self.n_outs if self.n_outs > 0: self.layers.append(self.regLayer) self.params.extend(self.regLayer.params) self.delta_params.extend(self.regLayer.delta_params) # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.regLayer.negative_log_likelihood(self.y) self.errors = self.finetune_cost if self.l1_reg is not None: for i in xrange(self.hidden_layers_number): W = self.layers[i].W self.finetune_cost += self.l1_reg * (abs(W).sum()) if self.l2_reg is not None: for i in xrange(self.hidden_layers_number): W = self.layers[i].W self.finetune_cost += self.l2_reg * T.sqr(W).sum() def build_finetune_functions(self, train_shared_xy, valid_shared_xy, batch_size): #print len(self.layers) #print [T.shape(l.W)[0] for l in self.layers] (train_set_x, train_set_y) = train_shared_xy (valid_set_x, valid_set_y) = valid_shared_xy #print T.shape(train_set_x), T.shape(train_set_y) index = T.lscalar('index') # index to a [mini]batch learning_rate = T.fscalar('learning_rate') momentum = T.fscalar('momentum') #theano.printing.pydotprint(self.finetune_cost, outfile="finetune_cost.png", var_with_name_simple=True) # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) #theano.printing.pydotprint(gparams, outfile="gparams.png", var_with_name_simple=True) # compute list of fine-tuning updates #updates = collections.OrderedDict() updates = theano.compat.python2x.OrderedDict() for dparam, gparam in zip(self.delta_params, gparams): updates[dparam] = momentum * dparam - gparam*learning_rate for dparam, param in zip(self.delta_params, self.params): updates[param] = param + updates[dparam] if self.max_col_norm is not None: for i in xrange(self.hidden_layers_number): W = self.layers[i].W if W in updates: updated_W = updates[W] col_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=0)) desired_norms = T.clip(col_norms, 0, self.max_col_norm) updates[W] = updated_W * (desired_norms / (1e-7 + col_norms)) #theano.printing.pydotprint(self.errors, outfile="errors.png", var_with_name_simple=True) train_fn = theano.function(inputs=[index, theano.Param(learning_rate, default = 0.0001), theano.Param(momentum, default = 0.5)], outputs=self.errors, updates=updates, givens={ self.x: train_set_x[index * batch_size: (index + 1) * batch_size], self.y: train_set_y[index * batch_size: (index + 1) * batch_size]}) #theano.printing.pydotprint(train_fn , outfile="train_fn.png", var_with_name_simple=True) valid_fn = theano.function(inputs=[index], outputs=self.errors, givens={ self.x: valid_set_x[index * batch_size: (index + 1) * batch_size], self.y: valid_set_y[index * batch_size: (index + 1) * batch_size]}) return train_fn, valid_fn def build_extract_feat_function(self, output_layer): feat = T.matrix('feat') out_da = theano.function([feat], self.layers[output_layer].output, updates = None, givens={self.x:feat}, on_unused_input='warn') return out_da def build_finetune_functions_kaldi(self, train_shared_xy, valid_shared_xy): (train_set_x, train_set_y) = train_shared_xy (valid_set_x, valid_set_y) = valid_shared_xy index = T.lscalar('index') # index to a [mini]batch learning_rate = T.fscalar('learning_rate') momentum = T.fscalar('momentum') # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = collections.OrderedDict() for dparam, gparam in zip(self.delta_params, gparams): updates[dparam] = momentum * dparam - gparam*learning_rate for dparam, param in zip(self.delta_params, self.params): updates[param] = param + updates[dparam] if self.max_col_norm is not None: for i in xrange(self.hidden_layers_number): W = self.layers[i].W if W in updates: updated_W = updates[W] col_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=0)) desired_norms = T.clip(col_norms, 0, self.max_col_norm) updates[W] = updated_W * (desired_norms / (1e-7 + col_norms)) train_fn = theano.function(inputs=[theano.Param(learning_rate, default = 0.0001), theano.Param(momentum, default = 0.5)], outputs=self.errors, updates=updates, givens={self.x: train_set_x, self.y: train_set_y}) valid_fn = theano.function(inputs=[], outputs=self.errors, givens={self.x: valid_set_x, self.y: valid_set_y}) return train_fn, valid_fn def write_model_to_raw(self, file_path): # output the model to tmp_path; this format is readable by PDNN _nnet2file(self.layers, filename=file_path) def write_model_to_kaldi(self, file_path, with_softmax = True): # determine whether it's BNF based on layer sizes output_layer_number = -1; for layer_index in range(1, self.hidden_layers_number - 1): cur_layer_size = self.hidden_layers_sizes[layer_index] prev_layer_size = self.hidden_layers_sizes[layer_index-1] next_layer_size = self.hidden_layers_sizes[layer_index+1] if cur_layer_size < prev_layer_size and cur_layer_size < next_layer_size: output_layer_number = layer_index+1; break layer_number = len(self.layers) if output_layer_number == -1: output_layer_number = layer_number fout = smart_open(file_path, 'wb') for i in xrange(output_layer_number): activation_text = '<' + self.cfg.activation_text + '>' if i == (layer_number-1) and with_softmax: # we assume that the last layer is a softmax layer activation_text = '<softmax>' W_mat = self.layers[i].W.get_value() b_vec = self.layers[i].b.get_value() input_size, output_size = W_mat.shape W_layer = []; b_layer = '' for rowX in xrange(output_size): W_layer.append('') for x in xrange(input_size): for t in xrange(output_size): W_layer[t] = W_layer[t] + str(W_mat[x][t]) + ' ' for x in xrange(output_size): b_layer = b_layer + str(b_vec[x]) + ' ' fout.write('<affinetransform> ' + str(output_size) + ' ' + str(input_size) + '\n') fout.write('[' + '\n') for x in xrange(output_size): fout.write(W_layer[x].strip() + '\n') fout.write(']' + '\n') fout.write('[ ' + b_layer.strip() + ' ]' + '\n') if activation_text == '<maxout>': fout.write(activation_text + ' ' + str(output_size/self.pool_size) + ' ' + str(output_size) + '\n') else: fout.write(activation_text + ' ' + str(output_size) + ' ' + str(output_size) + '\n') fout.close()