示例#1
0
文件: vqvae.py 项目: tricky61/WaveRNN
 def __init__(self,
              rnn_dims,
              fc_dims,
              global_decoder_cond_dims,
              upsample_factors,
              normalize_vq=False,
              noise_x=False,
              noise_y=False):
     super().__init__()
     self.n_classes = 256
     self.overtone = Overtone(rnn_dims, fc_dims, 128,
                              global_decoder_cond_dims)
     self.vq = VectorQuant(1, 512, 128, normalize=normalize_vq)
     self.noise_x = noise_x
     self.noise_y = noise_y
     encoder_layers = [
         (2, 4, 1),
         (2, 4, 1),
         (2, 4, 1),
         (1, 4, 1),
         (2, 4, 1),
         (1, 4, 1),
         (2, 4, 1),
         (1, 4, 1),
         (2, 4, 1),
         (1, 4, 1),
     ]
     self.encoder = DownsamplingEncoder(128, encoder_layers)
     self.frame_advantage = 15
     self.num_params()
示例#2
0
    def __init__(self, rnn_dims, fc_dims, global_decoder_cond_dims, upsample_factors, normalize_vq=False,
            noise_x=False, noise_y=False):
        super().__init__()
        self.n_vq_classes = 512
        self.n_f0_classes = 128
        self.vec_len = 128
        # self.channel_f0 = 128
        #self.upsample = UpsampleNetwork_F0(upsample_factors)
        #n_channels, n_classes, vec_len, normalize=False

        self.vq = VectorQuant(1, self.n_vq_classes, self.vec_len, normalize=normalize_vq)
        self.vq_f0 = VectorQuant(1, self.n_f0_classes, self.vec_len, normalize=normalize_vq)
        #self.vq_f0 = VectorQuant(1, self.n_classes_f0, self.vec_len, normalize=normalize_vq)
        self.noise_x = noise_x
        self.noise_y = noise_y
        encoder_layers_wave = [
            (2, 4, 1),
            (2, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            ]
        self.encoder = DownsamplingEncoder(128, encoder_layers_wave)

        encoder_layers_f0 = [
            (2, 4, 1),
            (2, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            ]
        self.encoder_f0 = DownsamplingEncoder(128, encoder_layers_f0)
        self.frame_advantage = 15
        self.num_params()
        self.overtone = Overtone_f0(rnn_dims, fc_dims,self.vec_len*2, global_decoder_cond_dims)
示例#3
0
文件: vqvae.py 项目: tricky61/WaveRNN
class Model(nn.Module):
    def __init__(self,
                 rnn_dims,
                 fc_dims,
                 global_decoder_cond_dims,
                 upsample_factors,
                 normalize_vq=False,
                 noise_x=False,
                 noise_y=False):
        super().__init__()
        self.n_classes = 256
        self.overtone = Overtone(rnn_dims, fc_dims, 128,
                                 global_decoder_cond_dims)
        self.vq = VectorQuant(1, 512, 128, normalize=normalize_vq)
        self.noise_x = noise_x
        self.noise_y = noise_y
        encoder_layers = [
            (2, 4, 1),
            (2, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
            (2, 4, 1),
            (1, 4, 1),
        ]
        self.encoder = DownsamplingEncoder(128, encoder_layers)
        self.frame_advantage = 15
        self.num_params()

    def forward(self, global_decoder_cond, x, samples):
        # x: (N, 768, 3)
        #logger.log(f'x: {x.size()}')
        # samples: (N, 1022)
        #logger.log(f'samples: {samples.size()}')
        continuous = self.encoder(samples)
        # continuous: (N, 14, 64)
        #logger.log(f'continuous: {continuous.size()}')
        discrete, vq_pen, encoder_pen, entropy = self.vq(
            continuous.unsqueeze(2))
        # discrete: (N, 14, 1, 64)
        #logger.log(f'discrete: {discrete.size()}')

        # cond: (N, 768, 64)
        #logger.log(f'cond: {cond.size()}')
        return self.overtone(
            x, discrete.squeeze(2),
            global_decoder_cond), vq_pen.mean(), encoder_pen.mean(), entropy

    def after_update(self):
        self.overtone.after_update()
        self.vq.after_update()

    def forward_generate(self,
                         global_decoder_cond,
                         samples,
                         deterministic=False,
                         use_half=False,
                         verbose=False):
        if use_half:
            samples = samples.half()
        # samples: (L)
        #logger.log(f'samples: {samples.size()}')
        self.eval()
        with torch.no_grad():
            continuous = self.encoder(samples)
            discrete, vq_pen, encoder_pen, entropy = self.vq(
                continuous.unsqueeze(2))
            logger.log(f'entropy: {entropy}')
            # cond: (1, L1, 64)
            #logger.log(f'cond: {cond.size()}')
            output = self.overtone.generate(discrete.squeeze(2),
                                            global_decoder_cond,
                                            use_half=use_half,
                                            verbose=verbose)
        self.train()
        return output

    def num_params(self):
        parameters = filter(lambda p: p.requires_grad, self.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        logger.log('Trainable Parameters: %.3f million' % parameters)

    def load_state_dict(self, dict, strict=True):
        if strict:
            return super().load_state_dict(self.upgrade_state_dict(dict))
        else:
            my_dict = self.state_dict()
            new_dict = {}
            for key, val in dict.items():
                if key not in my_dict:
                    logger.log(
                        f'Ignoring {key} because no such parameter exists')
                elif val.size() != my_dict[key].size():
                    logger.log(f'Ignoring {key} because of size mismatch')
                else:
                    logger.log(f'Loading {key}')
                    new_dict[key] = val
            return super().load_state_dict(new_dict, strict=False)

    def upgrade_state_dict(self, state_dict):
        out_dict = state_dict.copy()
        return out_dict

    def freeze_encoder(self):
        for name, param in self.named_parameters():
            if name.startswith('encoder.') or name.startswith('vq.'):
                logger.log(f'Freezing {name}')
                param.requires_grad = False
            else:
                logger.log(f'Not freezing {name}')

    def pad_left(self):
        return max(self.pad_left_decoder(), self.pad_left_encoder())

    def pad_left_decoder(self):
        return self.overtone.pad()

    def pad_left_encoder(self):
        return self.encoder.pad_left + (
            self.overtone.cond_pad -
            self.frame_advantage) * self.encoder.total_scale

    def pad_right(self):
        return self.frame_advantage * self.encoder.total_scale

    def total_scale(self):
        return self.encoder.total_scale

    def do_train(self,
                 paths,
                 dataset,
                 optimiser,
                 epochs,
                 batch_size,
                 step,
                 lr=1e-4,
                 valid_index=[],
                 use_half=False,
                 do_clip=False):

        if use_half:
            import apex
            optimiser = apex.fp16_utils.FP16_Optimizer(optimiser,
                                                       dynamic_loss_scale=True)
        for p in optimiser.param_groups:
            p['lr'] = lr
        criterion = nn.NLLLoss().cuda()
        k = 0
        saved_k = 0
        pad_left = self.pad_left()
        pad_left_encoder = self.pad_left_encoder()
        pad_left_decoder = self.pad_left_decoder()
        if self.noise_x:
            extra_pad_right = 127
        else:
            extra_pad_right = 0
        pad_right = self.pad_right() + extra_pad_right
        window = 16 * self.total_scale()
        logger.log(
            f'pad_left={pad_left_encoder}|{pad_left_decoder}, pad_right={pad_right}, total_scale={self.total_scale()}'
        )

        for e in range(epochs):

            trn_loader = DataLoader(
                dataset,
                collate_fn=lambda batch: env.collate_multispeaker_samples(
                    pad_left, window, pad_right, batch),
                batch_size=batch_size,
                num_workers=2,
                shuffle=True,
                pin_memory=True)

            start = time.time()
            running_loss_c = 0.
            running_loss_f = 0.
            running_loss_vq = 0.
            running_loss_vqc = 0.
            running_entropy = 0.
            running_max_grad = 0.
            running_max_grad_name = ""

            iters = len(trn_loader)

            for i, (speaker, wave16) in enumerate(trn_loader):

                speaker = speaker.cuda()
                wave16 = wave16.cuda()

                coarse = (wave16 + 2**15) // 256
                fine = (wave16 + 2**15) % 256

                coarse_f = coarse.float() / 127.5 - 1.
                fine_f = fine.float() / 127.5 - 1.
                total_f = (wave16.float() + 0.5) / 32767.5

                if self.noise_y:
                    noisy_f = total_f * (
                        0.02 * torch.randn(total_f.size(0), 1).cuda()
                    ).exp() + 0.003 * torch.randn_like(total_f)
                else:
                    noisy_f = total_f

                if use_half:
                    coarse_f = coarse_f.half()
                    fine_f = fine_f.half()
                    noisy_f = noisy_f.half()

                x = torch.cat([
                    coarse_f[:, pad_left -
                             pad_left_decoder:-pad_right].unsqueeze(-1),
                    fine_f[:, pad_left -
                           pad_left_decoder:-pad_right].unsqueeze(-1),
                    coarse_f[:, pad_left - pad_left_decoder + 1:1 -
                             pad_right].unsqueeze(-1),
                ],
                              dim=2)
                y_coarse = coarse[:, pad_left + 1:1 - pad_right]
                y_fine = fine[:, pad_left + 1:1 - pad_right]

                if self.noise_x:
                    # Randomly translate the input to the encoder to encourage
                    # translational invariance
                    total_len = coarse_f.size(1)
                    translated = []
                    for j in range(coarse_f.size(0)):
                        shift = random.randrange(256) - 128
                        translated.append(
                            noisy_f[j, pad_left - pad_left_encoder +
                                    shift:total_len - extra_pad_right + shift])
                    translated = torch.stack(translated, dim=0)
                else:
                    translated = noisy_f[:, pad_left - pad_left_encoder:]
                p_cf, vq_pen, encoder_pen, entropy = self(
                    speaker, x, translated)
                p_c, p_f = p_cf
                loss_c = criterion(p_c.transpose(1, 2).float(), y_coarse)
                loss_f = criterion(p_f.transpose(1, 2).float(), y_fine)
                encoder_weight = 0.01 * min(1, max(0.1, step / 1000 - 1))
                loss = loss_c + loss_f + vq_pen + encoder_weight * encoder_pen

                optimiser.zero_grad()
                if use_half:
                    optimiser.backward(loss)
                    if do_clip:
                        raise RuntimeError(
                            "clipping in half precision is not implemented yet"
                        )
                else:
                    loss.backward()
                    if do_clip:
                        max_grad = 0
                        max_grad_name = ""
                        for name, param in self.named_parameters():
                            if param.grad is not None:
                                param_max_grad = param.grad.data.abs().max()
                                if param_max_grad > max_grad:
                                    max_grad = param_max_grad
                                    max_grad_name = name
                                if 1000000 < param_max_grad:
                                    logger.log(
                                        f'Very large gradient at {name}: {param_max_grad}'
                                    )
                        if 100 < max_grad:
                            for param in self.parameters():
                                if param.grad is not None:
                                    if 1000000 < max_grad:
                                        param.grad.data.zero_()
                                    else:
                                        param.grad.data.mul_(100 / max_grad)
                        if running_max_grad < max_grad:
                            running_max_grad = max_grad
                            running_max_grad_name = max_grad_name

                        if 100000 < max_grad:
                            torch.save(self.state_dict(), "bad_model.pyt")
                            raise RuntimeError(
                                "Aborting due to crazy gradient (model saved to bad_model.pyt)"
                            )
                optimiser.step()
                running_loss_c += loss_c.item()
                running_loss_f += loss_f.item()
                running_loss_vq += vq_pen.item()
                running_loss_vqc += encoder_pen.item()
                running_entropy += entropy

                self.after_update()

                speed = (i + 1) / (time.time() - start)
                avg_loss_c = running_loss_c / (i + 1)
                avg_loss_f = running_loss_f / (i + 1)
                avg_loss_vq = running_loss_vq / (i + 1)
                avg_loss_vqc = running_loss_vqc / (i + 1)
                avg_entropy = running_entropy / (i + 1)

                step += 1
                k = step // 1000
                logger.status(
                    f'Epoch: {e+1}/{epochs} -- Batch: {i+1}/{iters} -- Loss: c={avg_loss_c:#.4} f={avg_loss_f:#.4} vq={avg_loss_vq:#.4} vqc={avg_loss_vqc:#.4} -- Entropy: {avg_entropy:#.4} -- Grad: {running_max_grad:#.1} {running_max_grad_name} Speed: {speed:#.4} steps/sec -- Step: {k}k '
                )

            os.makedirs(paths.checkpoint_dir, exist_ok=True)
            torch.save(self.state_dict(), paths.model_path())
            np.save(paths.step_path(), step)
            logger.log_current_status()
            logger.log(
                f' <saved>; w[0][0] = {self.overtone.wavernn.gru.weight_ih_l0[0][0]}'
            )
            if k > saved_k + 50:
                torch.save(self.state_dict(), paths.model_hist_path(step))
                saved_k = k
                self.do_generate(paths, step, dataset.path, valid_index)

    def do_generate(self,
                    paths,
                    step,
                    data_path,
                    test_index,
                    deterministic=False,
                    use_half=False,
                    verbose=False):
        k = step // 1000
        dataset = env.MultispeakerDataset(test_index, data_path)
        loader = DataLoader(dataset, shuffle=False)
        data = [x for x in loader]
        n_points = len(data)
        gt = [(x[0].float() + 0.5) / (2**15 - 0.5) for speaker, x in data]
        extended = [
            np.concatenate([
                np.zeros(self.pad_left_encoder(), dtype=np.float32), x,
                np.zeros(self.pad_right(), dtype=np.float32)
            ]) for x in gt
        ]
        speakers = [
            torch.FloatTensor(speaker[0].float()) for speaker, x in data
        ]
        maxlen = max([len(x) for x in extended])
        aligned = [
            torch.cat([torch.FloatTensor(x),
                       torch.zeros(maxlen - len(x))]) for x in extended
        ]
        os.makedirs(paths.gen_path(), exist_ok=True)
        out = self.forward_generate(
            torch.stack(speakers + list(reversed(speakers)), dim=0).cuda(),
            torch.stack(aligned + aligned, dim=0).cuda(),
            verbose=verbose,
            use_half=use_half)
        logger.log(f'out: {out.size()}')
        for i, x in enumerate(gt):
            librosa.output.write_wav(
                f'{paths.gen_path()}/{k}k_steps_{i}_target.wav',
                x.cpu().numpy(),
                sr=sample_rate)
            audio = out[i][:len(x)].cpu().numpy()
            librosa.output.write_wav(
                f'{paths.gen_path()}/{k}k_steps_{i}_generated.wav',
                audio,
                sr=sample_rate)
            audio_tr = out[n_points + i][:len(x)].cpu().numpy()
            librosa.output.write_wav(
                f'{paths.gen_path()}/{k}k_steps_{i}_transferred.wav',
                audio_tr,
                sr=sample_rate)