示例#1
0
def binary_cifar10_sbn(input, training=True):
	out = layers.binaryConv2d(input, 4, [3,3], [1,1], padding='VALID', use_bias=True, binarize_input=False, name='bc_conv2d_1_layer1')
	out = layers.spatial_shift_batch_norm(out, training=training, name='batchNormalization1_layer1')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_1_layer2')
	out = tf.layers.max_pooling2d(out, [2,2], [2,2])
	out = layers.spatial_shift_batch_norm(out, training=training, name='batchNormalization2_layer2')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_2_layer3')
	out = layers.spatial_shift_batch_norm(out, training=training, name='batchNormalization3_layer3')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_3_layer4')
	out = tf.layers.max_pooling2d(out, [2,2], [2,2])
	out = layers.spatial_shift_batch_norm(out, training=training, name='batchNormalization4_layer4')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_4_layer5')
	out = layers.spatial_shift_batch_norm(out, training=training, name='batchNormalization5_layer5')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_5_layer6')
	out = tf.layers.max_pooling2d(out, [2,2], [2,2])
	out = layers.spatial_shift_batch_norm(out, training=training, name='batchNormalization6_layer6')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryDense(out, 4, use_bias=True, name='binary_dense_1_layer7')
	out = layers.shift_batch_norm(out, training=training, name='batchNormalization7_layer7')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryDense(out, 4, use_bias=True, name='binary_dense_2_layer8')
	out = layers.shift_batch_norm(out, training=training, name='batchNormalization8_layer8')
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryDense(out, 10, name='binary_dense_3_layer9')
	output = layers.shift_batch_norm(out, training=training, name='batchNormalization9_layer9')
	
	return input, output
示例#2
0
def binary_cifar10(input, training=True):
	# This function is used only at the first layer of the model as we dont want to binarized the RGB images
	out = layers.binaryConv2d(input, 4, [3,3], [1,1], padding='VALID', use_bias=True, binarize_input=False, name='bc_conv2d_1_layer1')
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization1_layer1")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_1_layer2')
	out = tf.layers.max_pooling2d(out, [2,2], [2,2])
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization2_layer2")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_2_layer3')
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization3_layer3")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_3_layer4')
	out = tf.layers.max_pooling2d(out, [2,2], [2,2])
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization4_layer4")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_4_layer5')
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization5_layer5")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryConv2d(out, 4, [3,3], [1,1], padding='SAME', use_bias=True, name='bnn_conv2d_5_layer6')
	out = tf.layers.max_pooling2d(out, [2,2], [2,2])
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization6_layer6")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryDense(out, 4, use_bias=True, name='binary_dense_1_layer7')
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization7_layer7")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryDense(out, 4, use_bias=True, name='binary_dense_2_layer8')
	out = tf.layers.batch_normalization(out, training=training, name="batchNormalization8_layer8")
	out = tf.clip_by_value(out, -1, 1)
	out = layers.binaryDense(out, 10, name='binary_dense_3_layer9')
	output = tf.layers.batch_normalization(out, training=training, name="batchNormalization9_layer9")
	
	return input, output
示例#3
0
def binary_cifar10(input, training=True):
    out = layers.binaryConv2d(input,
                              128, [3, 3], [1, 1],
                              padding='VALID',
                              binarize_input=False,
                              name='bc_conv2d_1')
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              128, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_1')
    out = tf.layers.max_pooling2d(out, [2, 2], [2, 2])
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              256, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_2')
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              256, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_3')
    out = tf.layers.max_pooling2d(out, [2, 2], [2, 2])
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              512, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_4')
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              512, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_5')
    out = tf.layers.max_pooling2d(out, [2, 2], [2, 2])
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryDense(out, 1024, activation=None, name='binary_dense_1')
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryDense(out, 1024, activation=None, name='binary_dense_2')
    out = tf.layers.batch_normalization(out, training=training)
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryDense(out, 10, activation=None, name='binary_dense_3')
    output = tf.layers.batch_normalization(out, training=training)

    return input, output
示例#4
0
def binary_cifar10_sbn(input, training=True):
    out = layers.binaryConv2d(input,
                              128, [3, 3], [1, 1],
                              padding='VALID',
                              binarize_input=False,
                              name='bc_conv2d_1')
    out = layers.spatial_shift_batch_norm(out,
                                          training=training,
                                          name='shift_batch_norm_1')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              128, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_1')
    out = tf.layers.max_pooling2d(out, [2, 2], [2, 2])
    out = layers.spatial_shift_batch_norm(out,
                                          training=training,
                                          name='shift_batch_norm_2')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              256, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_2')
    out = layers.spatial_shift_batch_norm(out,
                                          training=training,
                                          name='shift_batch_norm_3')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              256, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_3')
    out = tf.layers.max_pooling2d(out, [2, 2], [2, 2])
    out = layers.spatial_shift_batch_norm(out,
                                          training=training,
                                          name='shift_batch_norm_4')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              512, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_4')
    out = layers.spatial_shift_batch_norm(out,
                                          training=training,
                                          name='shift_batch_norm_5')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryConv2d(out,
                              512, [3, 3], [1, 1],
                              padding='SAME',
                              name='bnn_conv2d_5')
    out = tf.layers.max_pooling2d(out, [2, 2], [2, 2])
    out = layers.spatial_shift_batch_norm(out,
                                          training=training,
                                          name='shift_batch_norm_6')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryDense(out, 1024, name='binary_dense_1')
    out = layers.shift_batch_norm(out,
                                  training=training,
                                  name='shift_batch_norm_7')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryDense(out, 1024, name='binary_dense_2')
    out = layers.shift_batch_norm(out,
                                  training=training,
                                  name='shift_batch_norm_8')
    out = tf.clip_by_value(out, -1, 1)

    out = layers.binaryDense(out, 10, name='binary_dense_3')
    output = layers.shift_batch_norm(out,
                                     training=training,
                                     name='shift_batch_norm_9')

    return input, output