x_shared.set_value(x_valid) y_shared.set_value(y_valid) print " compute losses" losses = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) loss = compute_loss(b) losses.append(loss) mean_valid_loss = np.sqrt(np.mean(losses)) print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss losses_valid.append(mean_valid_loss) layers.dump_params(l6, e=e) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1)) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str) print del chunk_data, xs_chunk, x_chunk, y_chunk, xs_valid, x_valid # memory cleanup
x_shared.set_value(x_valid) y_shared.set_value(y_valid) print " compute losses" losses = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) loss = compute_loss(b) losses.append(loss) mean_valid_loss = np.sqrt(np.mean(losses)) print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss losses_valid.append(mean_valid_loss) layers.dump_params(l6, e=e) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1)) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str) print