def blend_images(x, progress, resolution_schedule, num_blocks): """Blends images of different resolutions according to `progress`. When training `progress` is at a stable stage for resolution r, returns image `x` downscaled to resolution r and then upscaled to `final_resolutions`, call it x'(r). Otherwise when training `progress` is at a transition stage from resolution r to 2r, returns a linear combination of x'(r) and x'(2r). Args: x: An image `Tensor` of NHWC format with resolution `final_resolutions`. progress: A scalar float `Tensor` of training progress. resolution_schedule: An object of `ResolutionSchedule`. num_blocks: An integer of number of blocks. Returns: An image `Tensor` which is a blend of images of different resolutions. """ x_blend = [] for block_id in range(1, num_blocks + 1): alpha = _generator_alpha(block_id, progress) scale = resolution_schedule.scale_factor(block_id) x_blend.append(alpha * layers.upscale(layers.downscale(x, scale), scale)) return tf.add_n(x_blend)
def test_upscale_4d_images_returns_upscaled_images(self): x_np = np.array([[[[1, 2, 3]]], [[[4, 5, 6]]]], dtype=np.float32) with self.test_session(use_gpu=True) as sess: x1_np, x2_np = sess.run( [layers.upscale(tf.constant(x_np), n) for n in [1, 2]]) expected2_np = [[[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]], [[[4, 5, 6], [4, 5, 6]], [[4, 5, 6], [4, 5, 6]]]] self.assertNDArrayNear(x1_np, x_np, 1.0e-5) self.assertNDArrayNear(x2_np, expected2_np, 1.0e-5)
def test_blend_images_in_transition_stage(self): x_np = np.random.normal(size=[2, 8, 8, 3]) x = tf.constant(x_np, tf.float32) x_blend = networks.blend_images( x, tf.constant(0.2), resolution_schedule=networks.ResolutionSchedule(scale_base=2, num_resolutions=2), num_blocks=2) with self.test_session(use_gpu=True) as sess: x_blend_np = sess.run(x_blend) x_blend_expected_np = 0.8 * sess.run( layers.upscale(layers.downscale(x, 2), 2)) + 0.2 * x_np self.assertNDArrayNear(x_blend_np, x_blend_expected_np, 1.0e-6)
def generator(z, progress, num_filters_fn, resolution_schedule, num_blocks=None, kernel_size=3, colors=3, to_rgb_activation=None, scope='progressive_gan_generator', reuse=None): """Generator network for the progressive GAN model. Args: z: A `Tensor` of latent vector. The first dimension must be batch size. progress: A scalar float `Tensor` of training progress. num_filters_fn: A function that maps `block_id` to # of filters for the block. resolution_schedule: An object of `ResolutionSchedule`. num_blocks: An integer of number of blocks. None means maximum number of blocks, i.e. `resolution.schedule.num_resolutions`. Defaults to None. kernel_size: An integer of convolution kernel size. colors: Number of output color channels. Defaults to 3. to_rgb_activation: Activation function applied when output rgb. scope: A string or variable scope. reuse: Whether to reuse `scope`. Defaults to None which means to inherit the reuse option of the parent scope. Returns: A `Tensor` of model output and a dictionary of model end points. """ if num_blocks is None: num_blocks = resolution_schedule.num_resolutions start_h, start_w = resolution_schedule.start_resolutions final_h, final_w = resolution_schedule.final_resolutions def _conv2d(scope, x, kernel_size, filters, padding='SAME'): return layers.custom_conv2d( x=x, filters=filters, kernel_size=kernel_size, padding=padding, activation=lambda x: layers.pixel_norm(tf.nn.leaky_relu(x)), he_initializer_slope=0.0, scope=scope) def _to_rgb(x): return layers.custom_conv2d(x=x, filters=colors, kernel_size=1, padding='SAME', activation=to_rgb_activation, scope='to_rgb') end_points = {} with tf.variable_scope(scope, reuse=reuse): with tf.name_scope('input'): x = tf.contrib.layers.flatten(z) end_points['latent_vector'] = x with tf.variable_scope(block_name(1)): x = tf.expand_dims(tf.expand_dims(x, 1), 1) x = layers.pixel_norm(x) # Pad the 1 x 1 image to 2 * (start_h - 1) x 2 * (start_w - 1) # with zeros for the next conv. x = tf.pad( x, [[0] * 2, [start_h - 1] * 2, [start_w - 1] * 2, [0] * 2]) # The output is start_h x start_w x num_filters_fn(1). x = _conv2d('conv0', x, (start_h, start_w), num_filters_fn(1), 'VALID') x = _conv2d('conv1', x, kernel_size, num_filters_fn(1)) lods = [x] for block_id in range(2, num_blocks + 1): with tf.variable_scope(block_name(block_id)): x = layers.upscale(x, resolution_schedule.scale_base) x = _conv2d('conv0', x, kernel_size, num_filters_fn(block_id)) x = _conv2d('conv1', x, kernel_size, num_filters_fn(block_id)) lods.append(x) outputs = [] for block_id in range(1, num_blocks + 1): with tf.variable_scope(block_name(block_id)): lod = _to_rgb(lods[block_id - 1]) scale = resolution_schedule.scale_factor(block_id) lod = layers.upscale(lod, scale) end_points['upscaled_rgb_{}'.format(block_id)] = lod # alpha_i is used to replace lod_select. Note sum(alpha_i) is # garanteed to be 1. alpha = _generator_alpha(block_id, progress) end_points['alpha_{}'.format(block_id)] = alpha outputs.append(lod * alpha) predictions = tf.add_n(outputs) batch_size = z.shape[0].value predictions.set_shape([batch_size, final_h, final_w, colors]) end_points['predictions'] = predictions return predictions, end_points
def test_upscale_invalid_scale_throws_exception(self): with self.assertRaises(ValueError): self.assertRaises(layers.upscale(tf.constant([]), -1))
def generator(z, progress, num_filters_fn, resolution_schedule, num_blocks=None, kernel_size=3, colors=3, to_rgb_activation=None, scope='progressive_gan_generator', reuse=None): """Generator network for the progressive GAN model. Args: z: A `Tensor` of latent vector. The first dimension must be batch size. progress: A scalar float `Tensor` of training progress. num_filters_fn: A function that maps `block_id` to # of filters for the block. resolution_schedule: An object of `ResolutionSchedule`. num_blocks: An integer of number of blocks. None means maximum number of blocks, i.e. `resolution.schedule.num_resolutions`. Defaults to None. kernel_size: An integer of convolution kernel size. colors: Number of output color channels. Defaults to 3. to_rgb_activation: Activation function applied when output rgb. scope: A string or variable scope. reuse: Whether to reuse `scope`. Defaults to None which means to inherit the reuse option of the parent scope. Returns: A `Tensor` of model output and a dictionary of model end points. """ if num_blocks is None: num_blocks = resolution_schedule.num_resolutions start_h, start_w = resolution_schedule.start_resolutions final_h, final_w = resolution_schedule.final_resolutions def _conv2d(scope, x, kernel_size, filters, padding='SAME'): return layers.custom_conv2d( x=x, filters=filters, kernel_size=kernel_size, padding=padding, activation=lambda x: layers.pixel_norm(tf.nn.leaky_relu(x)), he_initializer_slope=0.0, scope=scope) def _to_rgb(x): return layers.custom_conv2d( x=x, filters=colors, kernel_size=1, padding='SAME', activation=to_rgb_activation, scope='to_rgb') end_points = {} with tf.variable_scope(scope, reuse=reuse): with tf.name_scope('input'): x = tf.contrib.layers.flatten(z) end_points['latent_vector'] = x with tf.variable_scope(block_name(1)): x = tf.expand_dims(tf.expand_dims(x, 1), 1) x = layers.pixel_norm(x) # Pad the 1 x 1 image to 2 * (start_h - 1) x 2 * (start_w - 1) # with zeros for the next conv. x = tf.pad(x, [[0] * 2, [start_h - 1] * 2, [start_w - 1] * 2, [0] * 2]) # The output is start_h x start_w x num_filters_fn(1). x = _conv2d('conv0', x, (start_h, start_w), num_filters_fn(1), 'VALID') x = _conv2d('conv1', x, kernel_size, num_filters_fn(1)) lods = [x] for block_id in range(2, num_blocks + 1): with tf.variable_scope(block_name(block_id)): x = layers.upscale(x, resolution_schedule.scale_base) x = _conv2d('conv0', x, kernel_size, num_filters_fn(block_id)) x = _conv2d('conv1', x, kernel_size, num_filters_fn(block_id)) lods.append(x) outputs = [] for block_id in range(1, num_blocks + 1): with tf.variable_scope(block_name(block_id)): lod = _to_rgb(lods[block_id - 1]) scale = resolution_schedule.scale_factor(block_id) lod = layers.upscale(lod, scale) end_points['upscaled_rgb_{}'.format(block_id)] = lod # alpha_i is used to replace lod_select. Note sum(alpha_i) is # garanteed to be 1. alpha = _generator_alpha(block_id, progress) end_points['alpha_{}'.format(block_id)] = alpha outputs.append(lod * alpha) predictions = tf.add_n(outputs) batch_size = z.shape[0].value predictions.set_shape([batch_size, final_h, final_w, colors]) end_points['predictions'] = predictions return predictions, end_points