示例#1
0
def construct_model(num_epochs,mcr,spectral_loss,save_batch_interval):
    """Construct LBANN model.
    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_img')
    
    ### Create expected labels for real and fake data (with label flipping = 0.01)
    prob_flip=0.01
    label_flip_rand = lbann.Uniform(min=0,max=1, neuron_dims='1')
    label_flip_prob = lbann.Constant(value=prob_flip, num_neurons='1')
    ones = lbann.GreaterEqual(label_flip_rand,label_flip_prob, name='is_real')
    zeros = lbann.LogicalNot(ones,name='is_fake')
    gen_ones=lbann.Constant(value=1.0,num_neurons='1')## All ones: no flip. Input for training Generator.
    
    #==============================================
    ### Implement GAN
    ##Create the noise vector
    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec'),dims='1 64')
    ## Creating the GAN object and implementing forward pass for both networks ###
    d1_real, d1_fake, d_adv, gen_img, img  = ExaGAN.CosmoGAN(mcr)(input,z,mcr) 
    
    #==============================================
    ### Compute quantities for adding to Loss and Metrics
    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,ones],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zeros],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,gen_ones],name='d_adv_bce')
    
    #img_loss = lbann.MeanSquaredError([gen_img,img])
    #l1_loss = lbann.L1Norm(lbann.WeightedSum([gen_img,img], scaling_factors="1 -1")) 
    
    #==============================================
    ### Set up source and destination layers
    layers = list(lbann.traverse_layer_graph(input))
    weights = set()
    src_layers,dst_layers = [],[]
    for l in layers:
        if(l.weights and "disc1" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2, analogous to discrim.trainable=False in Keras
        if(l.weights and "disc2" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    
    #==============================================
    ### Define Loss and Metrics
    #Define loss (Objective function)
    loss_list=[d1_real_bce,d1_fake_bce,d_adv_bce] ## Usual GAN loss function
#     loss_list=[d1_real_bce,d1_fake_bce] ## skipping adversarial loss for G for testing spectral loss
    
    if spectral_loss:
        dft_gen_img = lbann.DFTAbs(gen_img)
        dft_img = lbann.StopGradient(lbann.DFTAbs(img))
        spec_loss = lbann.Log(lbann.MeanSquaredError(dft_gen_img, dft_img))
        
        loss_list.append(lbann.LayerTerm(spec_loss, scale=8.0))
        
    loss = lbann.ObjectiveFunction(loss_list)
    
    #Define metrics
    metrics = [lbann.Metric(d1_real_bce,name='d_real'),lbann.Metric(d1_fake_bce, name='d_fake'), lbann.Metric(d_adv_bce,name='gen_adv')]
    if spectral_loss: metrics.append(lbann.Metric(spec_loss,name='spec_loss'))
    
    #==============================================
    ### Define callbacks list
    callbacks_list=[]
    dump_outputs=True
    save_model=False
    print_model=False
    
    callbacks_list.append(lbann.CallbackPrint())
    callbacks_list.append(lbann.CallbackTimer())
    callbacks_list.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers), destination_layers=list2str(dst_layers),batch_interval=1))
    if dump_outputs:
        #callbacks_list.append(lbann.CallbackDumpOutputs(layers='inp_img gen_img_instance1_activation', execution_modes='train validation', directory='dump_outs',batch_interval=save_batch_interval,format='npy')) 
        callbacks_list.append(lbann.CallbackDumpOutputs(layers='gen_img_instance1_activation', execution_modes='train validation', directory='dump_outs',batch_interval=save_batch_interval,format='npy')) 
    
    if save_model : callbacks_list.append(lbann.CallbackSaveModel(dir='models'))
    if print_model: callbacks_list.append(lbann.CallbackPrintModelDescription())
    
    ### Construct model
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=loss,
                       callbacks=callbacks_list)
示例#2
0
def construct_model():
    """Construct LBANN model.

    ExaGAN  model

    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_img')
    #label flipping
    label_flip_rand = lbann.Uniform(min=0,max=1, neuron_dims='1')
    label_flip_prob = lbann.Constant(value=0.01, num_neurons='1')
    one = lbann.GreaterEqual(label_flip_rand,label_flip_prob, name='is_real')
    zero = lbann.LogicalNot(one,name='is_fake')

    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec'),dims='1 64')
    d1_real, d1_fake, d_adv, gen_img  = ExaGAN.CosmoGAN()(input,z)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
      if(l.weights and "disc1" in l.name and "instance1" in l.name):
        src_layers.append(l.name)
      #freeze weights in disc2, analogous to discrim.trainable=False in Keras
      if(l.weights and "disc2" in l.name):
        dst_layers.append(l.name)
        for idx in range(len(l.weights)):
          l.weights[idx].optimizer = lbann.NoOptimizer()
      weights.update(l.weights)
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    obj = lbann.ObjectiveFunction([d1_real_bce,d1_fake_bce,d_adv_bce])
    # Initialize check metric callback
    metrics = [lbann.Metric(d1_real_bce,name='d_real'),
               lbann.Metric(d1_fake_bce, name='d_fake'),
               lbann.Metric(d_adv_bce,name='gen')]

    callbacks = [lbann.CallbackPrint(),
                 lbann.CallbackTimer(),
                 #Uncomment to dump output for plotting and further statistical analysis
                 #lbann.CallbackDumpOutputs(layers='inp_img gen_img_instance1_activation',
                 #                          execution_modes='train validation',
                 #                          directory='dump_outs',
                 #                          batch_interval=100,
                 #                          format='npy'),
                 lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                      destination_layers=list2str(dst_layers),
                                      batch_interval=2)]

    # Construct model
    num_epochs = 20
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)
示例#3
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    print("Dump model dir ", run_args.dump_model_dir)
    assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', data_field='samples'),
                            name='inp1')
    wae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    save_output = True if run_args.dump_outputs_dir else False

    print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims=run_args.z_dim)

    waemodel = molwae.MolWAE(input_feature_dims, dictionary_size,
                             embedding_size, pad_index, run_args.z_dim,
                             save_output)
    recon, d1_real, d1_fake, d_adv, arg_max = waemodel(input_, z)

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real, one],
                                                  name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake, zero],
                                                  name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv, one], name='d_adv_bce')

    wae_loss.append(recon)

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
        if (l.weights and "disc0" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2
        if (l.weights and "disc1" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    l2_weights = [
        w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)
    ]
    l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=1e-4)

    wae_loss.append(d1_real_bce)
    wae_loss.append(d_adv_bce)
    wae_loss.append(d1_fake_bce)
    wae_loss.append(l2_reg)
    print("LEN wae loss ", len(wae_loss))

    obj = lbann.ObjectiveFunction(wae_loss)

    # Initialize check metric callback
    metrics = [
        lbann.Metric(d_adv_bce, name='adv_loss'),
        lbann.Metric(recon, name='recon')
    ]

    callbacks = [
        lbann.CallbackPrint(),
        #lbann.CallbackStepLearningRate(step=10, amt=0.5),
        lbann.CallbackTimer()
    ]

    callbacks.append(
        lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                     destination_layers=list2str(dst_layers),
                                     batch_interval=2))

    #Dump output (activation) for post processing
    if (run_args.dump_outputs_dir):
        pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
        callbacks.append(
            lbann.CallbackDumpOutputs(
                batch_interval=run_args.dump_outputs_interval,
                execution_modes='test',
                directory=run_args.dump_outputs_dir,
                layers=f'inp pred_tensor {waemodel.q_mu.name}'))
    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)
示例#4
0
decode2 = lbann.FullyConnected(decode3neuron,
                               name="decode2",
                               has_bias=True,
                               hint_layer=encode1)

decode2neuron = lbann.Relu(decode2, name="decode2neuron")

decode1 = lbann.FullyConnected(decode2neuron,
                               name="decode1",
                               has_bias=True,
                               hint_layer=image)

# Reconstruction error
reconstruction = lbann.Sigmoid(decode1, name="reconstruction")

bin_cross_entropy = lbann.SigmoidBinaryCrossEntropy([decode1, image],
                                                    name="bin_cross_entropy")

bin_cross_entropy_sum = lbann.Reduction(bin_cross_entropy,
                                        name="bin_cross_entropy_sum",
                                        mode="sum")

mean_squared_error = lbann.MeanSquaredError([reconstruction, image],
                                            name="mean_squared_error")

layer_list = list(lbann.traverse_layer_graph(input_))

# Set up objective function
layer_term1 = lbann.LayerTerm(bin_cross_entropy)
layer_term2 = lbann.LayerTerm(kldiv)
l2_reg = lbann.L2WeightRegularization(scale=0.0005)
obj = lbann.ObjectiveFunction([layer_term1, layer_term2, l2_reg])
示例#5
0
def construct_jag_wae_model(ydim, zdim, mcf, useCNN, dump_models,
                            ltfb_batch_interval, num_epochs):
    """Construct LBANN model.

    JAG Wasserstein autoencoder  model

    """

    # Layer graph
    input = lbann.Input(data_field='samples', name='inp_data')
    # data is 64*64*4 images + 15 scalar + 5 param
    #inp_slice = lbann.Slice(input, axis=0, slice_points="0 16399 16404",name='inp_slice')
    inp_slice = lbann.Slice(input,
                            axis=0,
                            slice_points=str_list([0, ydim, ydim + 5]),
                            name='inp_slice')
    gt_y = lbann.Identity(inp_slice, name='gt_y')
    gt_x = lbann.Identity(inp_slice, name='gt_x')  #param not used

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    z_dim = 20  #Latent space dim

    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims="20")
    model = macc_network_architectures.MACCWAE(zdim,
                                               ydim,
                                               cf=mcf,
                                               use_CNN=useCNN)
    d1_real, d1_fake, d_adv, pred_y = model(z, gt_y)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real, one],
                                                  name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake, zero],
                                                  name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv, one], name='d_adv_bce')
    img_loss = lbann.MeanSquaredError([pred_y, gt_y])
    rec_error = lbann.L2Norm2(
        lbann.WeightedSum([pred_y, gt_y], scaling_factors="1 -1"))

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
        if (l.weights and "disc0" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2
        if (l.weights and "disc1" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    d_adv_bce = lbann.LayerTerm(d_adv_bce, scale=0.01)
    obj = lbann.ObjectiveFunction(
        [d1_real_bce, d1_fake_bce, d_adv_bce, img_loss, rec_error, l2_reg])
    # Initialize check metric callback
    metrics = [lbann.Metric(img_loss, name='recon_error')]
    #pred_y = macc_models.MACCWAE.pred_y_name
    callbacks = [
        lbann.CallbackPrint(),
        lbann.CallbackTimer(),
        lbann.CallbackPrintModelDescription(),
        lbann.CallbackSaveModel(dir=dump_models),
        lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                     destination_layers=list2str(dst_layers),
                                     batch_interval=2)
    ]

    if (ltfb_batch_interval > 0):
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=ltfb_batch_interval,
                               metric='recon_error',
                               low_score_wins=True,
                               exchange_hyperparameters=True))

    # Construct model
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)
示例#6
0
def construct_model():
    """Construct LBANN model.

    JAG Wasserstein autoencoder  model

    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_data')
    # data is 64*64*4 images + 15 scalar + 5 param
    inp_slice = lbann.Slice(input, axis=0, slice_points="0 16399 16404",name='inp_slice')
    gt_y = lbann.Identity(inp_slice,name='gt_y')
    gt_x = lbann.Identity(inp_slice, name='gt_x') #param not used

    zero  = lbann.Constant(value=0.0,num_neurons='1',name='zero')
    one  = lbann.Constant(value=1.0,num_neurons='1',name='one')

    y_dim = 16399 #image+scalar shape
    z_dim = 20  #Latent space dim

    z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="20")
    d1_real, d1_fake, d_adv, pred_y  = jag_models.WAE(z_dim,y_dim)(z,gt_y)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')

    img_loss = lbann.MeanSquaredError([pred_y,gt_y])
    rec_error = lbann.L2Norm2(lbann.WeightedSum([pred_y,gt_y], scaling_factors="1 -1"))

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
      if(l.weights and "disc0" in l.name and "instance1" in l.name):
        src_layers.append(l.name)
      #freeze weights in disc2
      if(l.weights and "disc1" in l.name):
        dst_layers.append(l.name)
        for idx in range(len(l.weights)):
          l.weights[idx].optimizer = lbann.NoOptimizer()
      weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    d_adv_bce = lbann.LayerTerm(d_adv_bce,scale=0.01)
    obj = lbann.ObjectiveFunction([d1_real_bce,d1_fake_bce,d_adv_bce,img_loss,rec_error,l2_reg])
    # Initialize check metric callback
    metrics = [lbann.Metric(img_loss, name='recon_error')]

    callbacks = [lbann.CallbackPrint(),
                 lbann.CallbackTimer(),
                 lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                      destination_layers=list2str(dst_layers),
                                      batch_interval=2)]

    # Construct model
    num_epochs = 100
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)
示例#7
0
def construct_model(args):
    """Construct LBANN for CosmoGAN 3D model.

    """
    obj = []
    metrics = []
    callbacks = []

    w  = [args.input_width]*3
    w.insert(0,args.input_channel)
    _sample_dims = w

    ps = None
    #have model and input ps
    if(args.use_distconv):
      ps = get_parallel_strategy_args(
          sample_groups=args.mini_batch_size,
          depth_groups=args.depth_groups,
          height_groups=args.height_groups,
      )

    g_device = 'GPU'
    input_ = lbann.Input(name='input', data_field='samples')
    input_ = lbann.Reshape(input_, dims=list2str(_sample_dims),name='in_reshape', device=g_device),
    x1 = lbann.Identity(input_, parallel_strategy=None, name='x1')
    x2 = lbann.Identity(input_, name='x2') if args.compute_mse else None

    zero  = lbann.Constant(value=0.0,num_neurons='1',name='zero',device=g_device)
    one  = lbann.Constant(value=1.0,num_neurons='1',name='one', device=g_device)

    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec', device=g_device),
                      dims='1 64', name='noise_vec_reshape',device=g_device)
    print("RUN ARGS ", args)

    d1_real,d1_fake,d_adv, gen_img = model.Exa3DGAN(args.input_width,args.input_channel,
                             g_device,ps,use_bn=args.use_bn)(x1,z)

    layers=list(lbann.traverse_layer_graph([d1_real, d1_fake]))
   # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
      if(l.weights and "disc1" in l.name and "instance1" in l.name):
        src_layers.append(l.name)
      #freeze weights in disc2, analogous to discrim.trainable=False in Keras
      if(l.weights and "disc2" in l.name):
        dst_layers.append(l.name)
        for idx in range(len(l.weights)):
          l.weights[idx].optimizer = lbann.NoOptimizer()
      weights.update(l.weights)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')
    mse = lbann.MeanSquaredError([gen_img, x2], name='MSE') if args.compute_mse else None

    obj.append(d1_real_bce)
    obj.append(d1_fake_bce)
    obj.append(d_adv_bce)

    metrics.append(lbann.Metric(d_adv_bce, name='d_adv_bce'))
    metrics.append(lbann.Metric(d1_real_bce, name='d1_real_bce'))
    metrics.append(lbann.Metric(d1_fake_bce, name='d1_fake_bce'))
    if (mse is not None):
      obj.append(mse)
      metrics.append(lbann.Metric(mse, name='MSE'))


    callbacks.append(lbann.CallbackPrint())
    callbacks.append(lbann.CallbackTimer())
    callbacks.append(lbann.CallbackGPUMemoryUsage())

    # ------------------------------------------
    # Construct model
    # ------------------------------------------

    return lbann.Model(args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)
示例#8
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', target_mode="N/A"),
                            name='inp1')
    vae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    save_output = True if run_args.dump_outputs_dir else False

    print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims="128")
    recon, d1_real, d1_fake, d_adv, arg_max = molwae.MolWAE(
        input_feature_dims, dictionary_size, embedding_size, pad_index,
        save_output)(input_, z)

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real, one],
                                                  name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake, zero],
                                                  name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv, one], name='d_adv_bce')

    vae_loss.append(recon)

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
        if (l.weights and "disc0" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2
        if (l.weights and "disc1" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)

    vae_loss.append(d1_real_bce)
    vae_loss.append(d_adv_bce)
    vae_loss.append(d1_fake_bce)
    vae_loss.append(l2_reg)
    print("LEN vae loss ", len(vae_loss))

    obj = lbann.ObjectiveFunction(vae_loss)

    # Initialize check metric callback
    metrics = [
        lbann.Metric(d_adv_bce, name='adv_loss'),
        lbann.Metric(recon, name='recon')
    ]

    callbacks = [
        lbann.CallbackPrint(),
        #lbann.CallbackStepLearningRate(step=10, amt=0.5),
        lbann.CallbackTimer()
    ]

    if (run_args.dump_weights_interval > 0):
        callbacks.append(
            lbann.CallbackDumpWeights(
                directory=run_args.dump_weights_dir,
                epoch_interval=run_args.dump_weights_interval))
    if (run_args.ltfb):
        send_name = ('' if run_args.weights_to_send == 'All' else
                     run_args.weights_to_send)  #hack for Merlin empty string
        weights_to_ex = [w.name for w in weights if send_name in w.name]
        print("LTFB Weights to exchange ", weights_to_ex)
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,
                               metric='recon',
                               weights=list2str(weights_to_ex),
                               low_score_wins=True,
                               exchange_hyperparameters=True))

    callbacks.append(
        lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                     destination_layers=list2str(dst_layers),
                                     batch_interval=2))

    #Dump final weight for inference
    if (run_args.dump_model_dir):
        callbacks.append(lbann.CallbackSaveModel(dir=run_args.dump_model_dir))

    #Dump output (activation) for post processing
    if (run_args.dump_outputs_dir):
        pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
        callbacks.append(
            lbann.CallbackDumpOutputs(
                batch_interval=run_args.dump_outputs_interval,
                execution_modes='test',
                directory=run_args.dump_outputs_dir,
                layers='inp pred_tensor'))

    if (run_args.warmup):
        callbacks.append(
            lbann.CallbackLinearGrowthLearningRate(target=run_args.lr / 512 *
                                                   run_args.batch_size,
                                                   num_epochs=5))

    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)