示例#1
0
def construct_model(num_epochs,mcr,spectral_loss,save_batch_interval):
    """Construct LBANN model.
    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_img')
    
    ### Create expected labels for real and fake data (with label flipping = 0.01)
    prob_flip=0.01
    label_flip_rand = lbann.Uniform(min=0,max=1, neuron_dims='1')
    label_flip_prob = lbann.Constant(value=prob_flip, num_neurons='1')
    ones = lbann.GreaterEqual(label_flip_rand,label_flip_prob, name='is_real')
    zeros = lbann.LogicalNot(ones,name='is_fake')
    gen_ones=lbann.Constant(value=1.0,num_neurons='1')## All ones: no flip. Input for training Generator.
    
    #==============================================
    ### Implement GAN
    ##Create the noise vector
    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec'),dims='1 64')
    ## Creating the GAN object and implementing forward pass for both networks ###
    d1_real, d1_fake, d_adv, gen_img, img  = ExaGAN.CosmoGAN(mcr)(input,z,mcr) 
    
    #==============================================
    ### Compute quantities for adding to Loss and Metrics
    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,ones],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zeros],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,gen_ones],name='d_adv_bce')
    
    #img_loss = lbann.MeanSquaredError([gen_img,img])
    #l1_loss = lbann.L1Norm(lbann.WeightedSum([gen_img,img], scaling_factors="1 -1")) 
    
    #==============================================
    ### Set up source and destination layers
    layers = list(lbann.traverse_layer_graph(input))
    weights = set()
    src_layers,dst_layers = [],[]
    for l in layers:
        if(l.weights and "disc1" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2, analogous to discrim.trainable=False in Keras
        if(l.weights and "disc2" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    
    #==============================================
    ### Define Loss and Metrics
    #Define loss (Objective function)
    loss_list=[d1_real_bce,d1_fake_bce,d_adv_bce] ## Usual GAN loss function
#     loss_list=[d1_real_bce,d1_fake_bce] ## skipping adversarial loss for G for testing spectral loss
    
    if spectral_loss:
        dft_gen_img = lbann.DFTAbs(gen_img)
        dft_img = lbann.StopGradient(lbann.DFTAbs(img))
        spec_loss = lbann.Log(lbann.MeanSquaredError(dft_gen_img, dft_img))
        
        loss_list.append(lbann.LayerTerm(spec_loss, scale=8.0))
        
    loss = lbann.ObjectiveFunction(loss_list)
    
    #Define metrics
    metrics = [lbann.Metric(d1_real_bce,name='d_real'),lbann.Metric(d1_fake_bce, name='d_fake'), lbann.Metric(d_adv_bce,name='gen_adv')]
    if spectral_loss: metrics.append(lbann.Metric(spec_loss,name='spec_loss'))
    
    #==============================================
    ### Define callbacks list
    callbacks_list=[]
    dump_outputs=True
    save_model=False
    print_model=False
    
    callbacks_list.append(lbann.CallbackPrint())
    callbacks_list.append(lbann.CallbackTimer())
    callbacks_list.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers), destination_layers=list2str(dst_layers),batch_interval=1))
    if dump_outputs:
        #callbacks_list.append(lbann.CallbackDumpOutputs(layers='inp_img gen_img_instance1_activation', execution_modes='train validation', directory='dump_outs',batch_interval=save_batch_interval,format='npy')) 
        callbacks_list.append(lbann.CallbackDumpOutputs(layers='gen_img_instance1_activation', execution_modes='train validation', directory='dump_outs',batch_interval=save_batch_interval,format='npy')) 
    
    if save_model : callbacks_list.append(lbann.CallbackSaveModel(dir='models'))
    if print_model: callbacks_list.append(lbann.CallbackPrintModelDescription())
    
    ### Construct model
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=loss,
                       callbacks=callbacks_list)
示例#2
0
def construct_model():
    """Construct LBANN model.

    ExaGAN  model

    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_img')
    #label flipping
    label_flip_rand = lbann.Uniform(min=0,max=1, neuron_dims='1')
    label_flip_prob = lbann.Constant(value=0.01, num_neurons='1')
    one = lbann.GreaterEqual(label_flip_rand,label_flip_prob, name='is_real')
    zero = lbann.LogicalNot(one,name='is_fake')

    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec'),dims='1 64')
    d1_real, d1_fake, d_adv, gen_img  = ExaGAN.CosmoGAN()(input,z)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
      if(l.weights and "disc1" in l.name and "instance1" in l.name):
        src_layers.append(l.name)
      #freeze weights in disc2, analogous to discrim.trainable=False in Keras
      if(l.weights and "disc2" in l.name):
        dst_layers.append(l.name)
        for idx in range(len(l.weights)):
          l.weights[idx].optimizer = lbann.NoOptimizer()
      weights.update(l.weights)
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    obj = lbann.ObjectiveFunction([d1_real_bce,d1_fake_bce,d_adv_bce])
    # Initialize check metric callback
    metrics = [lbann.Metric(d1_real_bce,name='d_real'),
               lbann.Metric(d1_fake_bce, name='d_fake'),
               lbann.Metric(d_adv_bce,name='gen')]

    callbacks = [lbann.CallbackPrint(),
                 lbann.CallbackTimer(),
                 #Uncomment to dump output for plotting and further statistical analysis
                 #lbann.CallbackDumpOutputs(layers='inp_img gen_img_instance1_activation',
                 #                          execution_modes='train validation',
                 #                          directory='dump_outs',
                 #                          batch_interval=100,
                 #                          format='npy'),
                 lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                      destination_layers=list2str(dst_layers),
                                      batch_interval=2)]

    # Construct model
    num_epochs = 20
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)