示例#1
0
        def finetuning(config):
            all_start_time = time.time()
            my_params = filter(lambda p: p.requires_grad,
                               self.model.parameters())
            optimizer = torch.optim.SGD(my_params,
                                        config['lr'],
                                        momentum=config['momentum'],
                                        nesterov=True)
            epoch_time = AverageMeter()
            lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
                optimizer, gamma=config['lr_decay'])

            train_info = {}
            test_info = {}

            from threading import Thread
            import asyncio

            def start_loop(loop):
                asyncio.set_event_loop(loop)
                loop.run_forever()

            new_loop = asyncio.new_event_loop()
            t = Thread(target=start_loop, args=(new_loop, ))
            t.start()

            for epoch in range(0, config['epochs']):
                start_time = time.time()
                avg_loss_ = AverageMeter()
                for x, target in self.train_loader:
                    optimizer.zero_grad()
                    x, target = x.cuda(), target.cuda()
                    loss = self.model.loss(self.model(x), target)
                    loss.backward()
                    avg_loss_.update(loss.item())
                    optimizer.step()
                end_time = time.time()
                training_time = end_time - all_start_time
                epoch_time.update(end_time - start_time)

                print(
                    "Epoch {0} finished in {1.val:.3f}s (avg: {1.avg:.3f}s). Training for {2}"
                    .format(epoch, epoch_time,
                            format_time(end_time - all_start_time)))
                print('AVG train loss {0.avg:.6f}'.format(avg_loss_))

                print("\tLR: {:.4e}".format(lr_scheduler.get_lr()[0]))
                lr_scheduler.step()
                if (epoch + 1) % config['print_freq'] == 0:
                    self.model.eval()
                    accuracy, ave_loss = compute_acc_loss(
                        my_forward_eval, self.train_loader)
                    train_info[epoch + 1] = [ave_loss, accuracy, training_time]
                    print('\ttrain loss: {:.6f}, accuracy: {:.4f}'.format(
                        ave_loss, accuracy))

                    accuracy, ave_loss = compute_acc_loss(
                        my_forward_eval, self.test_loader)
                    test_info[epoch + 1] = [ave_loss, accuracy, training_time]
                    print('\ttest  loss: {:.6f}, accuracy: {:.4f}'.format(
                        ave_loss, accuracy))
                    self.model.train()

                    to_save = {}
                    to_save['config'] = config
                    to_save['optimizer_state'] = optimizer.state_dict()
                    to_save['model_state'] = self.model.state_dict()
                    to_save['training_time'] = training_time
                    to_save['traing_info'] = train_info
                    to_save['test_info'] = test_info
                    to_save['current_epoch'] = epoch
                    to_save['compression_stats'] = compression_stats

                    async def actual_save():
                        # TODO: make better saves, 1) mv file as backup, 2) save new data 3) delte bk
                        torch.save(
                            to_save,
                            f'results/{self.name}_ft_{config["tag"]}.th')

                    asyncio.run_coroutine_threadsafe(actual_save(), new_loop)

            async def last_task():
                print("Async file saving has been finished.")
                new_loop.stop()

            asyncio.run_coroutine_threadsafe(last_task(), new_loop)
示例#2
0
        def l_step_optimization(model, lc_penalty, step, config):

            all_start_time = config['all_start_time']

            lr_scheduler = None
            my_params = filter(lambda p: p.requires_grad, model.parameters())
            learning_rate = config['lr']

            if config['lr_decay_mode'] == 'after_l':
                learning_rate *= (config['lr_decay']**step)
                print(f"Current LR={learning_rate}")

            def constract_my_forward_lc_eval(lc_penalty):
                pen = lc_penalty()

                def my_forward_lc_eval(x, target):
                    out_ = model.forward(x)
                    return out_, model.loss(out_, target) + pen

                return my_forward_lc_eval

            optimizer = torch.optim.SGD(my_params,
                                        learning_rate,
                                        momentum=config['momentum'],
                                        nesterov=True)

            if config['lr_decay_mode'] == 'restart_on_l':
                lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
                    optimizer, gamma=config['lr_decay'])

            if 'lr_trick' in config:
                l_trick_value = 0.1
                print(
                    'LR trick in play. first epoch is trained with LR of {:.4e}'
                    .format(config['lr'] * l_trick_value))
                for param_group in optimizer.param_groups:
                    param_group['lr'] = config['lr'] * l_trick_value
                # TODO: revert back the lr_trick?

            epochs_in_this_it = config['epochs'] if step > 0 else \
              config['first_mu_epochs'] if 'first_mu_epochs' in config else config['epochs']
            print('Epochs in this iteration is :', epochs_in_this_it)

            print('Epochs in this iteration is :', epochs_in_this_it)
            model.eval()

            lc_evaluator = constract_my_forward_lc_eval(lc_penalty)
            accuracy, ave_loss = compute_acc_loss(lc_evaluator,
                                                  self.train_loader)
            print('\ttrain loss: {:.6f}, accuracy: {:.4f}'.format(
                ave_loss, accuracy))
            accuracy, ave_loss = compute_acc_loss(lc_evaluator,
                                                  self.test_loader)
            print('\ttest  loss: {:.6f}, accuracy: {:.4f}'.format(
                ave_loss, accuracy))
            model.train()
            epoch_time = AverageMeter()
            rec = Recorder()

            # avg_epoch_losses = []
            for epoch in range(epochs_in_this_it):
                start_time = time.time()
                avg_loss_ = AverageMeter()
                for x, target in self.train_loader:
                    optimizer.zero_grad()
                    x, target = x.cuda(), target.cuda(non_blocking=True)
                    loss = model.loss(model(x), target) + lc_penalty()
                    avg_loss_.update(loss.item())
                    loss.backward()
                    optimizer.step()
                end_time = time.time()
                training_time = end_time - all_start_time
                epoch_time.update(end_time - start_time)

                print(
                    "LC step {0}, Epoch {1} finished in {2.val:.3f}s (avg: {2.avg:.3f}s). Training for {3}"
                    .format(step, epoch, epoch_time,
                            format_time(end_time - all_start_time)))
                print('AVG train loss {0.avg:.6f}'.format(avg_loss_))
                rec.record('average_loss_per_epoch', avg_loss_)

                if (epoch + 1) % config['print_freq'] == 0:
                    model.eval()
                    lc_evaluator = constract_my_forward_lc_eval(lc_penalty)

                    accuracy, ave_loss = compute_acc_loss(
                        lc_evaluator, self.train_loader)
                    rec.record('train', [
                        ave_loss, accuracy, training_time, step + 1, epoch + 1
                    ])
                    print('\ttrain loss: {:.6f}, accuracy: {:.4f}'.format(
                        ave_loss, accuracy))

                    accuracy, ave_loss = compute_acc_loss(
                        lc_evaluator, self.test_loader)
                    rec.record('test', [
                        ave_loss, accuracy, training_time, step + 1, epoch + 1
                    ])
                    print('\ttest  loss: {:.6f}, accuracy: {:.4f}'.format(
                        ave_loss, accuracy))
                    model.train()

                if config['lr_decay_mode'] == 'restart_on_l':
                    print("\told LR: {:.4e}".format(
                        optimizer.param_groups[0]['lr']))
                    lr_scheduler.step()
                    print("\tnew LR: {:.4e}".format(
                        optimizer.param_groups[0]['lr']))

                else:
                    print("\tLR: {:.4e}".format(learning_rate))

            info = {
                'train': rec.train,
                'test': rec.test,
                'average_loss_per_train_epoch': rec.average_loss_per_epoch
            }
            return info