示例#1
0
def test_from_light_curves_no_meta():
    lcs = []
    for idx in range(5):
        lc = make_light_curve(f'test_{idx}')
        lc.meta = {}
        lcs.append(lc)

    dataset = lcdata.from_light_curves(lcs)
    assert len(dataset.meta) == 5
示例#2
0
def make_dataset(start_idx=0, end_idx=10):
    lcs = [make_light_curve(f'test_{i}') for i in range(start_idx, end_idx)]
    dataset = lcdata.from_light_curves(lcs)

    dataset.meta['maskedvar'] = np.ma.masked_array(
        np.arange(start_idx, end_idx),
        mask=np.arange(start_idx, end_idx) % 2 == 0)

    return dataset
示例#3
0
def test_from_light_curves_order():
    # We sort the light curves in alphabetical order. Make sure that this works
    # correctly.
    lc1 = make_light_curve(object_id='1')
    lc2 = make_light_curve(object_id='2')
    lc3 = make_light_curve(object_id='3')

    # Add a flag to the fluxes so that we can track them.
    lc1['flux'][0] = 1.
    lc2['flux'][0] = 2.
    lc3['flux'][0] = 3.

    dataset = lcdata.from_light_curves([lc2, lc3, lc1])

    assert np.all(dataset.meta['object_id'] == ['1', '2', '3'])
    assert dataset.light_curves[0]['flux'][0] == 1.
    assert dataset.light_curves[1]['flux'][0] == 2.
    assert dataset.light_curves[2]['flux'][0] == 3.
示例#4
0
def test_from_light_curves():
    lc = make_light_curve()
    dataset = lcdata.from_light_curves([lc])

    assert len(dataset) == 1
示例#5
0
def test_from_light_curves_duplicate_object_ids():
    lcs = [make_light_curve('same_object_id') for i in range(2)]
    with pytest.raises(ValueError):
        lcdata.from_light_curves(lcs)