from ms2lda_molnet_integration import write_output_files
write_output_files(vd,
                   pairs_file,
                   output_prefix,
                   metadata,
                   overlap_thresh=args.input_network_overlap,
                   p_thresh=args.input_network_pvalue,
                   X=args.input_network_topx,
                   motif_metadata=motifdb_metadata)

# Writing the report - ntoe that you might need to set the 'backend' argument
# for this method to work (see the method in lda.py) as it depends what on
# your system will render the pdf...
from lda import write_topic_report
try:
    write_topic_report(vd, output_prefix + '_topic_report.pdf')
except:
    print("PDF Generation Failed")

### Writing additional output, creates a list of all motifs found in data, one motif per row and MS/MS Scan
all_motifs_in_scans = get_motifs_in_scans(
    vd,
    metadata,
    overlap_thresh=args.input_network_overlap,
    p_thresh=args.input_network_pvalue,
    X=args.input_network_topx,
    motif_metadata=motifdb_metadata)

# Outputting motif list, one by line
fieldnames = [
    'scan', 'precursor.mass', 'retention.time', "motif", "probability",
示例#2
0
    print "Writing combined edges"

    with open(input_prefix+'_edges_ms2lda.csv','w') as f:
        writer = csv.writer(f)
        for line in all_edges:
            writer.writerow(line)

    print "Creating summary file"

    summary_file = input_prefix + '_lda_summary.csv'
    write_summary_file(vd,summary_file)


    print "Creating pdf topic report"
    report_file = input_prefix + '_lda_report.pdf'
    write_topic_report(vd,report_file,backend = 'Agg')
            
def check_edge(edge,edges):
    if check_uni_edge(edge[0],edge[1],edges):
        return True
    if check_uni_edge(edge[1],edge[0],edges):
        return True
    return False

def check_uni_edge(node1,node2,edges):
    node1edges = filter(lambda x: x[0] == node1)
    if len(node1edges) > 0:
        node12edges = filter(lambda x: x[1] == node2)
        if len(node12edges) > 0:
            return True
    return False
vlda.run_vb(initialise=True, n_its=input_iterations)

vd = vlda.make_dictionary(
    features=features, metadata=metadata, filename=output_prefix + '.dict')

from ms2lda_molnet_integration import write_output_files
write_output_files(vd, pairs_file, output_prefix, metadata,
                   overlap_thresh=args.input_network_overlap, p_thresh=args.input_network_pvalue,
                   X=args.input_network_topx, motif_metadata = motifdb_metadata)

# Writing the report - ntoe that you might need to set the 'backend' argument
# for this method to work (see the method in lda.py) as it depends what on
# your system will render the pdf...
from lda import write_topic_report
try:
    write_topic_report(vd,output_prefix+'_topic_report.pdf')
except:
    print("PDF Generation Failed")


### Writing additional output, creates a list of all motifs found in data, one motif per row and MS/MS Scan
all_motifs_in_scans = get_motifs_in_scans(vd, metadata,
                                            overlap_thresh=args.input_network_overlap, p_thresh=args.input_network_pvalue,
                                            X=args.input_network_topx, motif_metadata = motifdb_metadata)

with open(output_prefix + "_motifs_in_scans.tsv", 'w') as tsvfile:
    fieldnames = ['scan', 'precursor.mass',
                  'retention.time',
                  "motif",
                  "probability",
                  "overlap",