def __init__(self, spectrum, T_eff, logg, z):
        '''
        Object to generate realistic limb darkening parameters

        Parameters
        ----------
        spectrum : TransitCurveGen.Spectrum
            Spectrum we want the LD coeffs for
        T_eff : tuple
            The effective temperature of the host star, given as
            (value, uncertainty) pair
        logg : tuple
            The log_10 of the surface gravity of the host star, with gravity
            measured in cm/s2. Should be given as a (value, uncertainty) pair.
        z : tuple
            The metalicity of the host, given as a (value, uncertainty) pair.
        '''

        # Make the filters
        log_wl = np.log10(spectrum.wavelengths)
        delta = log_wl[1] - log_wl[0]

        edges = [log_wl[0] - delta] + [wl + delta for wl in log_wl]
        edges = np.array(edges)

        self.filters = [
            BoxcarFilter('{}'.format(i), edges[i], edges[i + 1])
            for i in range(len(edges) - 1)
        ]

        print(len(self.filters), len(spectrum.wavelengths))

        sc = LDPSetCreator(teff=T_eff, logg=logg, z=z, filters=self.filters)

        self.ld_profiles = sc.create_profiles()
示例#2
0
    def setupInitialConditions(self):

        self.initial = {}
        self.initial['planet'] = Planet(J=0.0, \
            k=0.107509268533, \
            rs_over_a =0.136854018274, \
            b =0.143228040337, \
            q=0.0, \
            period=3.95023867775, \
            t0=2456416.39659, \
            dt = -0.000109927092499, \
            esinw=0.0, \
            ecosw=0.0)
        self.initial['star'] = Star(u1=0.47,
                                    u2=0.33,
                                    temperature=6170.0,
                                    logg=4.27,
                                    metallicity=0.26)
        self.initial['instrument'] = Instrument(self.bins[0].tlc, order=2)

        self.speak('using LDTk to estimate limb-darkening coefficients')

        self.ldtk_filename = os.path.join(self.binningdirectory,
                                          'ldtk_coefs.npy')
        try:
            self.ldtk_coefs, self.ldtk_coefuncertainties = np.load(
                self.ldtk_filename)
            self.speak('loaded LD coefficients from {}'.format(
                self.ldtk_filename))
        except IOError:
            # create some filters for the limb-darkening
            self.ldtk_filters = [
                BoxcarFilter(b.identifier, b.left / 10, b.right / 10)
                for b in self.bins
            ]

            # set up the profile creator
            self.ldtk_sc = LDPSetCreator(
                teff=(6170, 80),  # Define your star, and the code
                logg=(4.27, 0.07),  # downloads the uncached stellar
                z=(0.26, 0.15),  # spectra from the Husser et al.
                filters=self.ldtk_filters)  # FTP server automatically.

            self.ldtk_profiles = self.ldtk_sc.create_profiles()

            self.ldtk_coefs, self.ldtk_coefuncertainties = self.ldtk_profiles.coeffs_qd(
                do_mc=False)
            np.save(self.ldtk_filename,
                    (self.ldtk_coefs, self.ldtk_coefuncertainties))
            self.speak('saved new LD coefficients to {}'.format(
                self.ldtk_filename))
示例#3
0
def ldtk_ldc(lambda_min, lambda_max, Teff, Teff_unc, logg, logg_unc, z, z_unc):
    """
    Function to estimate quadratic limb darkening coefficients for a given star
    
    Parameters:
    ----------
    lambda_min: Start wavelength of the bandpass filter.
    
    lambda_max: End  wavelength of the bandpass filter.

    Teff: Effective temperature of the star.

    Teff_unc: Uncertainty in Teff.

    logg: Surface gravity of the star.

    logg_unc: Uncertainty in logg.

    z: Metallicity of the star.

    z_unc: Uncertainty in z.
    

    Returns
    -------
    cq, eq : Each an array giving the 2 quadractic limb darkening parameters and the errors associated with them 

    
    """

    from ldtk import LDPSetCreator, BoxcarFilter

    # Define your passbands. Boxcar filters useful in transmission spectroscopy
    filters = [BoxcarFilter('a', lambda_min, lambda_max)]

    sc = LDPSetCreator(
        teff=(Teff, Teff_unc),  # Define your star, and the code
        logg=(logg, logg_unc),  # downloads the uncached stellar
        z=(z, z_unc),  # spectra from the Husser et al.
        filters=filters)  # FTP server automatically.

    ps = sc.create_profiles()  # Create the limb darkening profiles
    cq, eq = ps.coeffs_qd(do_mc=True)  # Estimate quadratic law coefficients

    #lnlike = ps.lnlike_qd([[0.45,0.15],      # Calculate the quadratic law log
    #                       [0.35,0.10],      # likelihood for a set of coefficients
    #                       [0.25,0.05]])     # (returns the joint likelihood)

    #lnlike = ps.lnlike_qd([0.25,0.05],flt=0) # Quad. law log L for the first filter
    return cq, eq
示例#4
0
    def __init__(self,
                 host_T,
                 host_logg,
                 host_z,
                 filters,
                 ld_model='quadratic',
                 n_samples=20000,
                 do_mc=False,
                 cache_path=None):

        # Sanity checks
        if not ld_model in _implemented_ld_models:
            raise ValueError('Unrecognised ld_model {}'.format(ld_model))

        self.default_model = ld_model

        # Set up the filters
        #print('Setting up filters')
        ldtk_filters = []
        for i, f in enumerate(filters):
            if isinstance(f[0], Iterable):
                # We have been passed a full filter profile, set up
                # TabulatedFilter
                # Work out if the profile is in percent or fraction - is
                # anything bigget than 1?
                if np.any(f[1] > 1):
                    tmf = 1e-2
                else:
                    tmf = 1
                ldtk_filters.append(TabulatedFilter(i, f[0], f[1], tmf))
            else:
                ldtk_filters.append(BoxcarFilter(i, f[0], f[1]))

        # Make the set creator, downloading data files if required
        if cache_path is not None:
            os.makedirs(cache_path, exist_ok=True)
        #print('Making LD parameter set creator.')
        #print('This may take some time as we may need to download files...')
        set_creator = LDPSetCreator(teff=host_T,
                                    logg=host_logg,
                                    z=host_z,
                                    filters=ldtk_filters,
                                    cache=cache_path,
                                    dataset='visir-lowres')

        # Get the LD profiles from the set creator
        #print('Obtaining LD profiles')
        self.profile_set = set_creator.create_profiles(nsamples=n_samples)

        # Find the 'best values' for each filter and then find the ratios
        # compared to the first.
        #print('Finding coefficients and ratios')
        self.coeffs = {}
        self.ratios = {}

        self._power2_available = True

        for model in _implemented_ld_models:
            try:
                self.coeffs[model] = self._extract_best_coeffs(model)
                self.ratios[
                    model] = self.coeffs[model][0] / self.coeffs[model][0][0]
            except Exception as e:
                print(e)
                print(f'Unable to initialise {model} model')
                self._power2_available = False
示例#5
0
def createldgrid(minmu,
                 maxmu,
                 orbp,
                 ldmodel='nonlinear',
                 phoenixmin=1e-1,
                 segmentation=int(10),
                 verbose=False):
    '''
    G. ROUDIER: Wrapper around LDTK downloading tools
    LDTK: Parviainen et al. https://github.com/hpparvi/ldtk
    '''
    tstar = orbp['T*']
    terr = np.sqrt(abs(orbp['T*_uperr'] * orbp['T*_lowerr']))
    fehstar = orbp['FEH*']
    feherr = np.sqrt(abs(orbp['FEH*_uperr'] * orbp['FEH*_lowerr']))
    loggstar = orbp['LOGG*']
    loggerr = np.sqrt(abs(orbp['LOGG*_uperr'] * orbp['LOGG*_lowerr']))
    log.warning('>-- Temperature: %s +/- %s', str(tstar), str(terr))
    log.warning('>-- Metallicity: %s +/- %s', str(fehstar), str(feherr))
    log.warning('>-- Surface Gravity: %s +/- %s', str(loggstar), str(loggerr))
    niter = int(len(minmu) / segmentation) + 1
    allcl = None
    allel = None
    out = {}
    avmu = [np.mean([mm, xm]) for mm, xm in zip(minmu, maxmu)]
    for i in np.arange(niter):
        loweri = i * segmentation
        upperi = (i + 1) * segmentation
        if i == (niter - 1): upperi = len(avmu)
        munm = 1e3 * np.array(avmu[loweri:upperi])
        munmmin = 1e3 * np.array(minmu[loweri:upperi])
        munmmax = 1e3 * np.array(maxmu[loweri:upperi])
        filters = [
            BoxcarFilter(str(mue), mun, mux)
            for mue, mun, mux in zip(munm, munmmin, munmmax)
        ]
        sc = LDPSetCreator(teff=(tstar, terr),
                           logg=(loggstar, loggerr),
                           z=(fehstar, feherr),
                           filters=filters)
        ps = sc.create_profiles(nsamples=int(1e4))
        itpfail = False
        for testprof in ps.profile_averages:
            if np.all(~np.isfinite(testprof)): itpfail = True
            pass
        nfail = 1e0
        while itpfail:
            nfail *= 2
            sc = LDPSetCreator(teff=(tstar, nfail * terr),
                               logg=(loggstar, loggerr),
                               z=(fehstar, feherr),
                               filters=filters)
            ps = sc.create_profiles(nsamples=int(1e4))
            itpfail = False
            for testprof in ps.profile_averages:
                if np.all(~np.isfinite(testprof)): itpfail = True
                pass
            pass
        cl, el = ldx(ps.profile_mu,
                     ps.profile_averages,
                     ps.profile_uncertainties,
                     mumin=phoenixmin,
                     debug=verbose,
                     model=ldmodel)
        if allcl is None: allcl = cl
        else: allcl = np.concatenate((allcl, cl), axis=0)
        if allel is None: allel = el
        else: allel = np.concatenate((allel, el), axis=0)
        pass
    allel[allel > 1.] = 0.
    allel[~np.isfinite(allel)] = 0.
    out['MU'] = avmu
    out['LD'] = allcl.T
    out['ERR'] = allel.T
    for i in range(0, len(allcl.T)):
        log.warning('>-- LD%s: %s +/- %s', str(int(i)), str(float(allcl.T[i])),
                    str(float(allel.T[i])))
        pass
    return out