示例#1
0
文件: test_probe.py 项目: SigmaX/LEAP
def test_CSVAttributesProbe_3():
    """Changing the order of the attributes list changes the order of the columns."""
    # Set up a population
    # TODO simplify this with a test fixture
    pop = data.test_population
    pop, _ = op.evaluate(pop)  # Evaluate its fitness

    # Assign distinct alues to an attribute on each individual
    attrs = [('foo', ['GREEN', 15, 'BLUE', 72.81]), \
             ('bar', ['Colorless', 'green', 'ideas', 'sleep']), \
             ('baz', [['a', 'b', 'c'], [1, 2, 3], [None, None, None], [0.1, 0.2, 0.3]])]
    for attr, vals in attrs:
        for (ind, val) in zip(pop, vals):
            ind.attributes[attr] = val

    # Setup a probe that writes to a str in memory
    stream = io.StringIO()
    probe = CSVAttributesProbe(
        stream,
        ['bar', 'foo'
         ])  # Passing params in reverse order from the other test above
    probe.set_step(10)

    # Execute
    probe(pop, None)
    result = stream.getvalue()
    stream.close()

    # Test
    expected = "step, bar, foo\n" + \
               "10, Colorless, GREEN\n"  + \
               "10, green, 15\n" + \
               "10, ideas, BLUE\n" + \
               "10, sleep, 72.81\n"
    assert (result == expected)
示例#2
0
文件: test_probe.py 项目: SigmaX/LEAP
def test_CSVAttributesProbe_1():
    """When recording the attribute 'my_value' and leaving other arguments at their default,
    running CSVProbe on a population of individuals with just the attribute 'my_value' should
    produce the correct CSV-formatted output."""
    # Set up a population
    # TODO simplify this with a test fixture
    pop = data.test_population
    pop, _ = op.evaluate(pop)  # Evaluate its fitness

    # Assign distinct alues to an attribute on each individual
    attr = 'my_value'
    vals = ['GREEN', 15, 'BLUE', 72.81]
    for (ind, val) in zip(pop, vals):
        ind.attributes[attr] = val

    # Setup a probe that writes to a str in memory
    stream = io.StringIO()
    probe = CSVAttributesProbe(stream, ['my_value'])
    probe.set_step(10)

    # Execute
    probe(pop, None)
    result = stream.getvalue()
    stream.close()

    # Test
    expected = "step, my_value\n" + \
               "10, GREEN\n"  + \
               "10, 15\n" + \
               "10, BLUE\n" + \
               "10, 72.81\n"
    assert (result == expected)
示例#3
0
文件: test_probe.py 项目: SigmaX/LEAP
def test_CSVAttributesProbe_2():
    """When recording the attribute 'my_value' and leaving other arguments at their default,
    running CSVProbe on a population of individuals with several attributes should
    produce CSV-formatted output that only records 'my_value'."""
    # Set up a population
    # TODO simplify this with a test fixture
    pop = data.test_population
    pop, _ = op.evaluate(pop)  # Evaluate its fitness

    # Assign distinct alues to an attribute on each individual
    attrs = [('foo', ['GREEN', 15, 'BLUE', 72.81]), \
             ('bar', ['Colorless', 'green', 'ideas', 'sleep']), \
             ('baz', [['a', 'b', 'c'], [1, 2, 3], [None, None, None], [0.1, 0.2, 0.3]])]
    for attr, vals in attrs:
        for (ind, val) in zip(pop, vals):
            ind.attributes[attr] = val

    # Setup a probe that writes to a str in memory
    stream = io.StringIO()
    probe = CSVAttributesProbe(stream, ['foo', 'bar'])
    probe.set_step(10)

    # Execute
    probe(pop, None)
    result = stream.getvalue()
    stream.close()

    # Test
    expected = "step, foo, bar\n" + \
               "10, GREEN, Colorless\n"  + \
               "10, 15, green\n" + \
               "10, BLUE, ideas\n" + \
               "10, 72.81, sleep\n"
    assert (result == expected)
示例#4
0
文件: data.py 项目: SigmaX/LEAP
def _build_test_pop():
    """Construct a synthetic population for illustrating example operations."""
    pop = [
        core.Individual([1, 0, 1, 1, 0], core.IdentityDecoder(),
                        binary.MaxOnes()),
        core.Individual([0, 0, 1, 0, 0], core.IdentityDecoder(),
                        binary.MaxOnes()),
        core.Individual([0, 1, 1, 1, 1], core.IdentityDecoder(),
                        binary.MaxOnes()),
        core.Individual([1, 0, 0, 0, 1], core.IdentityDecoder(),
                        binary.MaxOnes())
    ]
    pop, _ = op.evaluate(pop)

    # Assign distinct values to an attribute on each individual
    attrs = [('foo', ['GREEN', 15, 'BLUE', 72.81]),
             ('bar', ['Colorless', 'green', 'ideas', 'sleep']),
             ('baz', [['a', 'b', 'c'], [1, 2, 3], [None, None, None],
                      [0.1, 0.2, 0.3]])]
    for attr, vals in attrs:
        for (ind, val) in zip(pop, vals):
            ind.attributes[attr] = val

    return pop