示例#1
0
def forward_integrate_singleGamma_HBS(x_initial, x_target, learned_gamma, dt,
                                      eps, max_N):
    '''
    forward integration of the HBS modulation controller starting from x_initial,
    toward x_target, with obstacles given as a list of gamma functions.
    integration interval is dt, and N integration steps are performed.
    return an (N+1) x d tensor for x trajectory and an N x d tensor for x_dot trajectory.
    '''

    # Parse Gamma
    classifier = learned_gamma['classifier']
    max_dist = learned_gamma['max_dist']
    reference_points = learned_gamma['reference_points']
    dim = len(x_target)
    x_traj = []
    x_traj.append(x_initial)
    x_dot_traj = []
    x_cur = x_initial
    # print("Before Integration")
    for i in range(max_N):
        gamma_val = learn_gamma_fn.get_gamma(x_cur,
                                             classifier,
                                             max_dist,
                                             reference_points,
                                             dimension=dim)
        normal_vec = learn_gamma_fn.get_normal_direction(x_cur,
                                                         classifier,
                                                         reference_points,
                                                         max_dist,
                                                         dimension=dim)
        orig_ds = linear_controller(x_cur, x_target)
        x_dot = modulation_singleGamma_HBS_multiRef(
            query_pt=x_cur,
            orig_ds=orig_ds,
            gamma_query=gamma_val,
            normal_vec_query=normal_vec.reshape(dim),
            obstacle_reference_points=reference_points,
            repulsive_gammaMargin=0.01)
        x_dot = x_dot / np.linalg.norm(x_dot + epsilon) * 0.10
        x_dot_traj.append(x_dot)
        x_cur = x_cur + x_dot * dt
        if np.linalg.norm(x_cur - x_target) < eps:
            print("Attractor Reached")
            break
        x_traj.append(x_cur)
    return np.stack(x_traj), np.stack(x_dot_traj)
示例#2
0
def test3D_HBS_svmlearnedGammas(x_target, x_initial, gamma_type):
    # Create 3D Dataset
    grid_size = 15
    X, Y, c_labels = create_franka_dataset(dimension=3,
                                           grid_size=grid_size,
                                           plot_training_data=0)
    gamma_svm = 20
    c_svm = 20
    grid_limits_x = [0.1, 1.0]
    grid_limits_y = [-0.8, 0.8]
    grid_limits_z = [0.55, 1.1]
    dt = 0.03

    # Learn Gamma Function/s!
    if not gamma_type:
        # Same SVM for all Gammas (i.e. normals will be the same)
        learned_obstacles = learn_gamma_fn.create_obstacles_from_data(
            data=X,
            label=Y,
            plot_raw_data=False,
            gamma_svm=gamma_svm,
            c_svm=c_svm,
            cluster_labels=c_labels)
    else:
        # Independent SVMs for each Gammas (i.e. normals will be different at each grid state)
        learned_obstacles = learn_gamma_fn.create_obstacles_from_data_multi(
            data=X,
            label=Y,
            plot_raw_data=False,
            gamma_svm=gamma_svm,
            c_svm=c_svm,
            cluster_labels=c_labels)

    # -- Draw Normal Vector Field of Gamma Functions and Modulated DS --- #
    grid_limits_x = [0.1, 1.0]
    grid_limits_y = [-0.8, 0.8]
    grid_limits_z = [0.55, 1.3]

    xx, yy, zz = np.meshgrid(
        np.linspace(grid_limits_x[0], grid_limits_x[1], grid_size),
        np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size),
        np.linspace(grid_limits_z[0], grid_limits_z[1], grid_size))
    positions = np.c_[xx.ravel(), yy.ravel(), zz.ravel()].T

    if not gamma_type:
        # This will use the single gamma function formulation (which is not entirely correct due to handling of the reference points)
        classifier = learned_obstacles['classifier']
        max_dist = learned_obstacles['max_dist']
        reference_points = learned_obstacles['reference_points']
        gamma_svm = learned_obstacles['gamma_svm']
        n_obstacles = learned_obstacles['n_obstacles']
        filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_combined_3D"

        print("Computing Gammas and Normals..")
        gamma_vals = learn_gamma_fn.get_gamma(positions,
                                              classifier,
                                              max_dist,
                                              reference_points,
                                              dimension=3)
        normal_vecs = learn_gamma_fn.get_normal_direction(positions,
                                                          classifier,
                                                          reference_points,
                                                          max_dist,
                                                          gamma_svm=gamma_svm,
                                                          dimension=3)

        ########################################################################################
        # ------ Visualize Gammas and Normal Vectors! -- Make self-contained function ------ #
        fig = plt.figure()
        ax = plt.axes(projection='3d')
        plt.title("$\Gamma$-Score")
        ax.set_xlim3d(grid_limits_x[0], grid_limits_x[1])
        ax.set_ylim3d(grid_limits_y[0], grid_limits_y[1])
        ax.set_zlim3d(grid_limits_z[0], grid_limits_z[1])
        gamma_score = gamma_vals - 1  # Subtract 1 to have differentiation boundary at 1
        ax.scatter3D(X[0, :],
                     X[1, :],
                     X[2, :],
                     '.',
                     c=gamma_score,
                     cmap=plt.cm.coolwarm,
                     alpha=0.10)

        normal_vecs = normal_vecs.reshape(X.shape)
        ax.quiver(X[0, :],
                  X[1, :],
                  X[2, :],
                  normal_vecs[0, :],
                  normal_vecs[1, :],
                  normal_vecs[2, :],
                  length=0.05,
                  normalize=True)
        ax.view_init(30, -40)
        ax.set_xlabel('$x_1$', fontsize=15)
        ax.set_ylabel('$x_2$', fontsize=15)
        ax.set_zlabel('$x_3$', fontsize=15)
        plt.savefig(filename + ".png", dpi=300)
        plt.savefig(filename + ".pdf", dpi=300)
        plt.show()
        print("DONE")
        ########################################################################################

        ########################################################################################
        # ------ Visualize Gammas and Vector Field! -- Make self-contained function ------ #
        fig1 = plt.figure()
        ax1 = plt.axes(projection='3d')
        plt.title('HBS Modulated DS', fontsize=15)
        ax.set_xlim3d(grid_limits_x[0], grid_limits_x[1])
        ax.set_ylim3d(grid_limits_y[0], grid_limits_y[1])
        ax.set_zlim3d(grid_limits_z[0], grid_limits_z[1])
        filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_combined_modDS_3D"

        X_OBS = X[:, Y == 1]
        # GAMMA_SCORE_OBS = gamma_score[Y == 1]
        ax1.scatter3D(X_OBS[0, :],
                      X_OBS[1, :],
                      X_OBS[2, :],
                      edgecolor="r",
                      facecolor="gold")

        # Add vector field!
        print("Computing the Vector Field.")
        # NOT NECESSARY!!!!
        # Create data for 3D Visualization of vector fields
        xx, yy, zz = np.meshgrid(
            np.linspace(grid_limits_x[0], grid_limits_x[1], grid_size),
            np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size),
            np.linspace(grid_limits_z[0], grid_limits_z[1], grid_size))
        normal_vecs = normal_vecs.reshape(3, xx.shape[0], xx.shape[1],
                                          xx.shape[2])
        uu, vv, ww = np.meshgrid(
            np.linspace(grid_limits_x[0], grid_limits_x[1], grid_size),
            np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size),
            np.linspace(grid_limits_z[0], grid_limits_z[1], grid_size))
        gamma_vals = gamma_vals.reshape(xx.shape)
        print(gamma_vals.shape)
        normal_vecs = normal_vecs.reshape(3, xx.shape[0], xx.shape[1],
                                          xx.shape[2])
        for i in range(grid_size):
            for j in range(grid_size):
                for k in range(grid_size):
                    x_query = np.array([xx[i, j, k], yy[i, j, k], zz[i, j, k]])
                    orig_ds = modulation_svm.linear_controller(
                        x_query, x_target)
                    print(gamma_vals[i, j, k])
                    print("orig_ds", orig_ds)
                    mod_x_dot = modulation_svm.modulation_singleGamma_HBS_multiRef(
                        query_pt=x_query,
                        orig_ds=orig_ds,
                        gamma_query=gamma_vals[i, j, k],
                        normal_vec_query=normal_vecs[:, i, j, k],
                        obstacle_reference_points=reference_points,
                        repulsive_gammaMargin=0.01)
                    x_dot_norm = mod_x_dot / np.linalg.norm(mod_x_dot +
                                                            epsilon) * 0.05
                    uu[i, j] = x_dot_norm[0]
                    vv[i, j] = x_dot_norm[1]
                    ww[i, j] = x_dot_norm[2]

        ax1.quiver(xx,
                   yy,
                   zz,
                   uu,
                   vv,
                   ww,
                   length=0.05,
                   normalize=True,
                   alpha=0.1)
        ax1.view_init(30, -40)
        print("Done plotting vector field.")

        # Integrate trajectories from initial point
        repetitions = 10
        for i in range(repetitions):
            x_target = rand_target_loc()
            x, x_dot = modulation_svm.forward_integrate_singleGamma_HBS(
                x_initial,
                x_target,
                learned_obstacles,
                dt=0.05,
                eps=0.03,
                max_N=10000)
            ax1.scatter(x.T[0, :],
                        x.T[1, :],
                        x.T[2, :],
                        edgecolor="b",
                        facecolor="blue")

        print("reference_points", reference_points)
        reference_point = reference_points[0]
        print("reference point 1: ", reference_point)
        ax1.scatter3D([reference_point[0]], [reference_point[1]],
                      [reference_point[2]],
                      edgecolor="r",
                      facecolor="red")

        reference_point = reference_points[1]
        print("reference point 2: ", reference_point)
        ax1.scatter3D([reference_point[0]], [reference_point[1]],
                      [reference_point[2]],
                      edgecolor="r",
                      facecolor="red")

        ax1.view_init(30, -40)
        ax1.set_xlabel('$x_1$', fontsize=15)
        ax1.set_ylabel('$x_2$', fontsize=15)
        ax1.set_zlabel('$x_3$', fontsize=15)
        plt.savefig(filename + ".png", dpi=300)
        plt.savefig(filename + ".pdf", dpi=300)
        plt.show()
        print("DONE")

    else:
        # -- Implement the other option of using multiple gamma functions later --- #:
        print("TODO: Implement plotting of multiple gamma functions..")
示例#3
0
def test2D_HBS_svmlearnedGammas(x_target, gamma_type, which_data):
    # Using 2D data from epfl-lasa dataset
    if (which_data == 0):
        grid_size = 50
        X, Y = learn_gamma_fn.read_data_lasa(
            "dynamical_system_modulation_svm/data/twoObstacles_environment.txt"
        )
        gamma_svm = 20
        c_svm = 20
        grid_limits_x = [0, 1]
        grid_limits_y = [0, 1]
        c_labels = []
        dt = 0.03
        x_initial = np.array([0.0, 0.65])

    # Using 2D data from irg-frank/table setup
    if (which_data == 1):
        grid_size = 50
        X, Y, c_labels = create_franka_dataset(dimension=2,
                                               grid_size=grid_size,
                                               plot_training_data=0)
        gamma_svm = 20
        c_svm = 10
        grid_limits_x = [-0.8, 0.8]
        grid_limits_y = [0.55, 1.3]
        dt = 0.03
        x_initial = np.array([0.0, 1.221])

    # Learn Gamma Function/s!
    if not gamma_type:
        # Same SVM for all Gammas (i.e. normals will be the same)
        learned_obstacles = learn_gamma_fn.create_obstacles_from_data(
            data=X,
            label=Y,
            plot_raw_data=False,
            gamma_svm=gamma_svm,
            c_svm=c_svm,
            cluster_labels=c_labels)
    else:
        # Independent SVMs for each Gammas (i.e. normals will be different at each grid state)
        learned_obstacles = learn_gamma_fn.create_obstacles_from_data_multi(
            data=X,
            label=Y,
            plot_raw_data=False,
            gamma_svm=gamma_svm,
            c_svm=c_svm,
            cluster_labels=c_labels)

    # Create Data for plotting
    xx, yy = np.meshgrid(
        np.linspace(grid_limits_x[0], grid_limits_x[1], grid_size),
        np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size))
    positions = np.c_[xx.ravel(), yy.ravel()].T

    # -- Draw Normal Vector Field of Gamma Functions and Modulated DS --- #
    if not gamma_type:
        # This will use the single gamma function formulation (which is not entirely correct due to handling of the reference points)
        classifier = learned_obstacles['classifier']
        max_dist = learned_obstacles['max_dist']
        reference_points = learned_obstacles['reference_points']
        gamma_svm = learned_obstacles['gamma_svm']
        n_obstacles = learned_obstacles['n_obstacles']
        filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_combined_2D"

        normal_vecs = learn_gamma_fn.get_normal_direction(positions,
                                                          classifier,
                                                          reference_points,
                                                          max_dist,
                                                          gamma_svm=gamma_svm)
        fig, ax = learn_gamma_fn.draw_contour_map(classifier,
                                                  max_dist,
                                                  reference_points,
                                                  gamma_value=True,
                                                  normal_vecs=normal_vecs,
                                                  grid_limits_x=grid_limits_x,
                                                  grid_limits_y=grid_limits_y,
                                                  grid_size=grid_size,
                                                  data=X[:, Y == 1])
        fig.savefig(filename + ".png", dpi=300)
        fig.savefig(filename + ".pdf", dpi=300)

        gamma_vals = learn_gamma_fn.get_gamma(positions, classifier, max_dist,
                                              reference_points)
        normal_vecs = learn_gamma_fn.get_normal_direction(positions,
                                                          classifier,
                                                          reference_points,
                                                          max_dist,
                                                          gamma_svm=gamma_svm)
        gamma_vals = gamma_vals.reshape(xx.shape)
        normal_vecs = normal_vecs.reshape(2, xx.shape[0], xx.shape[1])

        filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_combined_modDS_2D"

        # MODULATION CONSIDERS ALL REFERENCE POINTS
        modulation_svm.draw_modulated_svmGamma_HBS(x_target,
                                                   reference_points,
                                                   gamma_vals,
                                                   normal_vecs,
                                                   n_obstacles,
                                                   grid_limits_x,
                                                   grid_limits_y,
                                                   grid_size,
                                                   x_initial,
                                                   learned_obstacles,
                                                   dt,
                                                   filename,
                                                   data=X[:, Y == 1])

    else:
        for oo in range(len(learned_obstacles)):
            classifier = learned_obstacles[oo]['classifier']
            max_dist = learned_obstacles[oo]['max_dist']
            reference_point = learned_obstacles[oo]['reference_point']
            gamma_svm = learned_obstacles[oo]['gamma_svm']

            filename = './dynamical_system_modulation_svm/figures/svmlearnedGamma_obstacle_{}_2D.png'.format(
                oo)

            normal_vecs = learn_gamma_fn.get_normal_direction(
                positions,
                classifier,
                reference_point,
                max_dist,
                gamma_svm=gamma_svm)
            fig, ax = learn_gamma_fn.draw_contour_map(classifier,
                                                      max_dist,
                                                      reference_point,
                                                      gamma_value=True,
                                                      normal_vecs=normal_vecs,
                                                      grid_limits=grid_limits,
                                                      grid_size=grid_size)
            fig.savefig(filename)

            print("Doing modulation for obstacle {}".format(oo))
            gamma_vals = learn_gamma_fn.get_gamma(positions, classifier,
                                                  max_dist, reference_point)

            # This will use the single gamma function formulation (which
            gamma_vals = gamma_vals.reshape(xx.shape)
            normal_vecs = normal_vecs.reshape(2, xx.shape[0], xx.shape[1])
            filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_obstacle_{}_modDS_2D.png".format(
                oo)
            modulation_svm.raw_modulated_svmGamma_HBS(x_target,
                                                      reference_point,
                                                      gamma_vals, normal_vecs,
                                                      1, grid_limits,
                                                      grid_size, filename)

        print("Doing combined modulation of all obstacles")
        filename = "./dynamical_system_modulation_svm/figures/multisvmlearnedGamma_ALLobstacles_modDS_2D.png"
        modulation_svm.draw_modulated_multisvmGamma_HBS(
            x_target, learned_obstacles, grid_limits, grid_size, filename)
def learn3D_HBS_svmlearnedGammas(x_target, x_initial, sim_type, with_wall):
    # Create 3D Dataset
    grid_size = 30
    view_normals = 0
    view_streamlines = 1
    override_refPts = 1

    print('Generating Dataset')

    if override_refPts:
        if sim_type == 'pyb':
            reference_points = np.array([[0, -0.122,
                                          0.975], [0.0, 0.39, 0.776],
                                         [0.0, -0.122, 0.61]])
        else:
            reference_points = np.array([[0.478, 0, 0.975], [0.99, 0, 0.776],
                                         [0.478, 0, 0.61]])
    else:
        reference_points = []

    if sim_type == 'gaz':
        X, Y, c_labels = create_franka_dataset_gaz_coord(dimension=3,
                                                         grid_size=grid_size,
                                                         plot_training_data=0,
                                                         with_wall=with_wall)
        grid_limits_x = [0.1, 1.0]
        grid_limits_y = [-0.8, 0.8]
        grid_limits_z = [0.55, 1.3]
    elif sim_type == 'pyb':
        X, Y, c_labels = create_franka_dataset_pyb_coord(dimension=3,
                                                         grid_size=grid_size,
                                                         plot_training_data=0,
                                                         with_wall=with_wall)
        grid_limits_x = [-0.8, 0.8]
        grid_limits_y = [-0.5, 0.4]
        grid_limits_z = [0.55, 1.3]
    print('DONE')

    gamma_svm = 20
    c_svm = 20
    dt = 0.03

    # Same SVM for all Gammas (i.e. normals will be the same)
    print('Learning Gamma function')
    learned_obstacles = learn_gamma_fn.create_obstacles_from_data(
        data=X,
        label=Y,
        plot_raw_data=False,
        gamma_svm=gamma_svm,
        c_svm=c_svm,
        cluster_labels=c_labels,
        reference_points=reference_points)
    print('Done')

    # Save model!
    gamma_svm_model = (learned_obstacles, gamma_svm, c_svm)
    if with_wall:
        filename = "./dynamical_system_modulation_svm/models/gammaSVM_frankaROCUS_bounded"
    else:
        filename = "./dynamical_system_modulation_svm/models/gammaSVM_frankaROCUS"

    if sim_type == 'gaz':
        pickle.dump(gamma_svm_model, open(filename + "_gaz.pkl", 'wb'))
    else:
        pickle.dump(gamma_svm_model, open(filename + "_pyb.pkl", 'wb'))

    # -- Draw Normal Vector Field of Gamma Functions and Modulated DS --- #
    xx, yy, zz = np.meshgrid(
        np.linspace(grid_limits_x[0], grid_limits_x[1], grid_size),
        np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size),
        np.linspace(grid_limits_z[0], grid_limits_z[1], grid_size))
    positions = np.c_[xx.ravel(), yy.ravel(), zz.ravel()].T

    classifier = learned_obstacles['classifier']
    max_dist = learned_obstacles['max_dist']
    reference_points = learned_obstacles['reference_points']
    gamma_svm = learned_obstacles['gamma_svm']
    n_obstacles = learned_obstacles['n_obstacles']
    filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_combined_3D"
    if sim_type == 'gaz':
        filename = filename + "_gaz"
    else:
        filename = filename + "_pyb"

    print("Computing Gammas and Normals..")
    gamma_vals = learn_gamma_fn.get_gamma(positions,
                                          classifier,
                                          max_dist,
                                          reference_points,
                                          dimension=3)
    normal_vecs = learn_gamma_fn.get_normal_direction(positions,
                                                      classifier,
                                                      reference_points,
                                                      max_dist,
                                                      gamma_svm=gamma_svm,
                                                      dimension=3)

    if view_normals:
        ########################################################################################
        # ------ Visualize Gammas and Normal Vectors! -- Make self-contained function ------ #
        fig = plt.figure()
        ax = plt.axes(projection='3d')
        plt.title("$\Gamma$-Score")
        ax.set_xlim3d(grid_limits_x[0], grid_limits_x[1])
        ax.set_ylim3d(grid_limits_y[0], grid_limits_y[1])
        ax.set_zlim3d(grid_limits_z[0], grid_limits_z[1])
        ax.scatter3D(X[0, :],
                     X[1, :],
                     X[2, :],
                     '.',
                     c=gamma_vals,
                     cmap=plt.cm.coolwarm,
                     alpha=0.10)

        normal_vecs = normal_vecs.reshape(X.shape)
        ax.quiver(X[0, :],
                  X[1, :],
                  X[2, :],
                  normal_vecs[0, :],
                  normal_vecs[1, :],
                  normal_vecs[2, :],
                  length=0.05,
                  normalize=True)
        ax.view_init(30, 160)
        ax.set_xlabel('$x_1$', fontsize=15)
        ax.set_ylabel('$x_2$', fontsize=15)
        ax.set_zlabel('$x_3$', fontsize=15)
        plt.savefig(filename + ".png", dpi=300)
        plt.savefig(filename + ".pdf", dpi=300)
        plt.show()
        print("DONE")
        ########################################################################################

    if view_streamlines:
        ########################################################################################
        # ------ Visualize Gammas and Vector Field! -- Make self-contained function ------ #
        fig1 = plt.figure()
        ax1 = plt.axes(projection='3d')
        plt.title('HBS Modulated DS', fontsize=15)
        ax1.set_xlim3d(grid_limits_x[0], grid_limits_x[1])
        ax1.set_ylim3d(grid_limits_y[0], grid_limits_y[1])
        ax1.set_zlim3d(grid_limits_z[0], grid_limits_z[1])
        filename = filename + "_modDS"
        X_OBS = X[:, Y == 1]

        # GAMMA_SCORE_OBS = gamma_score[Y == 1]
        # ax1.scatter3D(X_OBS[0,:],X_OBS[1,:], X_OBS[2,:],edgecolor="r", facecolor="gold");

        vertical_wall = [0, 0.1, 0.825], [0.01, 0.8, 0.4]
        horizontal_wall = [0, 0.1, 1.025], [0.7, 0.8, 0.01]
        table_top = [0, 0, 0.6], [1.5, 1, 0.05]
        plot_box(ax1, *vertical_wall, **{'color': 'C1'})
        plot_box(ax1, *horizontal_wall, **{'color': 'C1'})
        plot_box(ax1, *table_top, **{'color': 'C1'})

        # Integrate trajectories from initial point
        repetitions = 10
        for i in range(repetitions):
            x_target = rand_target_loc(sim_type)
            x, x_dot = modulation_svm.forward_integrate_singleGamma_HBS(
                x_initial,
                x_target,
                learned_obstacles,
                dt=0.05,
                eps=0.03,
                max_N=10000)
            ax1.scatter(x.T[0, :],
                        x.T[1, :],
                        x.T[2, :],
                        edgecolor="b",
                        facecolor="blue")

        for oo in range(len(reference_points)):
            reference_point = reference_points[oo]
            print("reference point 1: ", reference_point)
            ax1.scatter3D([reference_point[0]], [reference_point[1]],
                          [reference_point[2]],
                          edgecolor="r",
                          facecolor="red")

        ax1.view_init(0, 180)
        ax1.set_xlabel('$x_1$', fontsize=15)
        ax1.set_ylabel('$x_2$', fontsize=15)
        ax1.set_zlabel('$x_3$', fontsize=15)
        plt.savefig(filename + ".png", dpi=300)
        plt.savefig(filename + ".pdf", dpi=300)
        plt.show()
        print("DONE")
def learn2D_HBS_svmlearnedGammas(x_target, sim_type):

    grid_size = 50
    print('Generating Dataset')
    if sim_type == 'gaz':
        X, Y, c_labels = create_franka_dataset_gaz_coord(dimension=2,
                                                         grid_size=grid_size,
                                                         plot_training_data=0,
                                                         with_wall=0)
    elif sim_type == 'pyb':
        X, Y, c_labels = create_franka_dataset_pyb_coord(dimension=2,
                                                         grid_size=grid_size,
                                                         plot_training_data=0,
                                                         with_wall=0)
    print('DONE')

    # Same for both reference frames
    gamma_svm = 20
    c_svm = 10
    grid_limits_x = [-0.8, 0.8]
    grid_limits_y = [0.55, 1.3]
    dt = 0.03
    x_initial = np.array([0.0, 1.221])

    # Same SVM for all Gammas (i.e. normals will be the same)
    print('Learning Gamma function')
    learned_obstacles = learn_gamma_fn.create_obstacles_from_data(
        data=X,
        label=Y,
        plot_raw_data=False,
        gamma_svm=gamma_svm,
        c_svm=c_svm,
        cluster_labels=c_labels)
    print('Done')

    # Create Data for plotting
    xx, yy = np.meshgrid(
        np.linspace(grid_limits_x[0], grid_limits_x[1], grid_size),
        np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size))
    positions = np.c_[xx.ravel(), yy.ravel()].T

    # -- Draw Normal Vector Field of Gamma Functions and Modulated DS with integrated trajectories--- #
    classifier = learned_obstacles['classifier']
    max_dist = learned_obstacles['max_dist']
    reference_points = learned_obstacles['reference_points']
    gamma_svm = learned_obstacles['gamma_svm']
    n_obstacles = learned_obstacles['n_obstacles']
    filename = "./dynamical_system_modulation_svm/figures/svmlearnedGamma_combined_2D"
    if sim_type == 'gaz':
        filename = filename + "_gaz"
    else:
        filename = filename + "_pyb"

    normal_vecs = learn_gamma_fn.get_normal_direction(positions,
                                                      classifier,
                                                      reference_points,
                                                      max_dist,
                                                      gamma_svm=gamma_svm)
    fig, ax = learn_gamma_fn.draw_contour_map(classifier,
                                              max_dist,
                                              reference_points,
                                              gamma_value=True,
                                              normal_vecs=normal_vecs,
                                              grid_limits_x=grid_limits_x,
                                              grid_limits_y=grid_limits_y,
                                              grid_size=grid_size)
    fig.savefig(filename + ".png", dpi=300)
    fig.savefig(filename + ".pdf", dpi=300)

    gamma_vals = learn_gamma_fn.get_gamma(positions, classifier, max_dist,
                                          reference_points)
    # normal_vecs = learn_gamma_fn.get_normal_direction(positions, classifier, reference_points, max_dist, gamma_svm=gamma_svm)
    gamma_vals = gamma_vals.reshape(xx.shape)
    normal_vecs = normal_vecs.reshape(2, xx.shape[0], xx.shape[1])

    filename = filename + "_modDS"

    # MODULATION CONSIDERS ALL REFERENCE POINTS
    modulation_svm.draw_modulated_svmGamma_HBS(x_target, reference_points,
                                               gamma_vals, normal_vecs,
                                               n_obstacles, grid_limits_x,
                                               grid_limits_y, grid_size,
                                               x_initial, learned_obstacles,
                                               dt, filename)
示例#6
0
def create_points_gamma():
    # CREATE POINT CLOUD TO VISUALIZE GAMMA VALUES!!
    grid_size = 35
    points = []
    use_gamma = 1
    for k in np.linspace(grid_limits_z[0], grid_limits_z[1], grid_size):
        for j in np.linspace(grid_limits_y[0], grid_limits_y[1], grid_size):
            for i in np.linspace(grid_limits_x[0], grid_limits_x[1],
                                 grid_size):
                x = float(i)
                y = float(j)
                z = float(k)

                # Free space
                r = int(0.0 * 255.0)
                g = int(1.0 * 255.0)
                b = int(0.0 * 255.0)
                a = int(0.001 * 255.0)
                obstacle = 0

                # -- Fill in here the colors with gamma function -- #
                if use_gamma:

                    # Define Gammas
                    classifier = learned_gamma['classifier']
                    max_dist = learned_gamma['max_dist']
                    reference_points = learned_gamma['reference_points']
                    x_eval = np.array([x, y, z])
                    gamma_val = learn_gamma_fn.get_gamma(x_eval,
                                                         classifier,
                                                         max_dist,
                                                         reference_points,
                                                         dimension=3)

                    print("Gamma vals:", gamma_val)
                    if gamma_val < 1:
                        r = int(1.0 * 255.0)
                        g = int(0.0 * 255.0)
                        a = int(0.075 * 255.0)
                        obstacle = 1
                    else:
                        r = int(0.05 * 255.0)
                        g = int(min(1, gamma_val / 10) * 255.0)
                        b = int(0.0 * 255.0)
                        a = int(0.075 * 255.0)

                else:
                    # -- Fill in here the colors with table description -- #
                    print("Using geometric table description")
                    # The table Top
                    if (z < 0.625):
                        r = int(1.0 * 255.0)
                        g = int(0.0 * 255.0)
                        a = int(0.075 * 255.0)

                    # The vertical wall
                    if (x >= 0.3):
                        if (
                                y >= -0.04 and y <= 0.04
                        ):  # Adding 2cm no the sides (to account for gripper)
                            if (z >= 0.625 and z <= 1.025):
                                r = int(1.0 * 255.0)
                                g = int(0.0 * 255.0)
                                a = int(0.075 * 255.0)

                    # The horizontal wall
                    if (x >= 0.3):
                        if (y >= -0.45 and y <= 0.45):
                            if (z >= 0.975 and z <= 1.065):
                                r = int(1.0 * 255.0)
                                g = int(0.0 * 255.0)
                                a = int(0.075 * 255.0)

                rgb = struct.unpack('I', struct.pack('BBBB', b, g, r, a))[0]
                pt = [x, y, z, rgb]
                if obstacle:
                    points.append(pt)

    return points
示例#7
0
    def _compute_desired_velocities(self):
        """
            Compute desired task-space velocities from state-dependent DS
        """

        # --- Linear Controller with Modulated DS! --- #
        pos_delta = self.ee_pos - self.DS_pos_att
        self.pos_error = LA.norm(pos_delta)

        # Compute Desired Linear Velocity
        # orig_ds = -self.A_p.dot(pos_delta)
        orig_ds = -pos_delta
        rospy.loginfo("x_dot:{}".format(orig_ds))
        gamma_val = learn_gamma_fn.get_gamma(np.array(self.ee_pos),
                                             self.classifier,
                                             self.max_dist,
                                             self.reference_points,
                                             dimension=3)
        rospy.loginfo("gamma(x):{}".format(gamma_val))
        normal_vec = learn_gamma_fn.get_normal_direction(np.array(self.ee_pos),
                                                         self.classifier,
                                                         self.reference_points,
                                                         self.max_dist,
                                                         dimension=3)
        rospy.loginfo("gamma_grad(x):{}".format(normal_vec))

        if gamma_val < 1:
            rospy.loginfo(
                'ROBOT IS COLLIDED REGION.. DO SOMETHING, CHARLIE!!!')

        # if np.dot(orig_ds, normal_vec) > 0:
        #     x_dot_mod  = orig_ds
        # else:
        x_dot_mod = modulation_svm.modulation_singleGamma_HBS_multiRef(
            query_pt=np.array(self.ee_pos),
            orig_ds=np.array(orig_ds),
            gamma_query=gamma_val,
            normal_vec_query=normal_vec.reshape(3),
            obstacle_reference_points=self.reference_points,
            repulsive_gammaMargin=0.01)

        rospy.loginfo("x_dot_mod:{}".format(x_dot_mod))
        lin_vel = self.scale_DS * x_dot_mod

        # if self.ee_pos[2] > 1.0 and gamma_val < 1:
        # lin_vel[2] = lin_vel[2] + 0.05

        rospy.loginfo('Desired linear velocity: {}'.format(lin_vel))

        # --- Compute desired attractor aligned to reference --- #
        desired_rotation = np.array((3, 3))
        if self.DS_attractor[1] < 0:
            sign_y = -1
        else:
            sign_y = 1

        R_y = sign_y * orig_ds / np.linalg.norm(orig_ds)
        rospy.loginfo('R_y: {}'.format(R_y))

        if self.ee_pos[2] > 1:
            R_z = np.array([0, 0, -1])
        else:
            R_z = np.array([0, 0, 1])
        rospy.loginfo('R_z: {}'.format(R_z))

        # Make it orthogonal to n
        R_y -= R_y.dot(R_z) * R_z / np.linalg.norm(R_z)**2
        # normalize it
        R_y /= np.linalg.norm(R_y)
        R_x = np.cross(R_y, R_z)
        desired_rotation = np.hstack([R_x, R_y, R_z])
        rospy.loginfo('R_mod: {}'.format(desired_rotation))
        quat_attr_ = Quaternion(matrix=self.ee_rot)

        # --- Quaternion error --- #
        # quat_attr_    = Quaternion(array=[self.DS_quat_att[3],self.DS_quat_att[0],self.DS_quat_att[1],self.DS_quat_att[2]])

        # Difference between two quaternions
        delta_quat = self.ee_quat * quat_attr_.conjugate
        delta_log = Quaternion.log(delta_quat)
        delta_log_np = np.array([
            delta_log.elements[1], delta_log.elements[2], delta_log.elements[3]
        ])
        self.quat_error = LA.norm(delta_log_np)

        # --- Compute Desired Angular Velocity --- #
        ang_vel = -self.A_o.dot(delta_log_np)

        # --- Compute Desired Angular Velocity in ee-reference frame --- #
        RT = self.ee_rot.transpose()
        # Difference desired quaternion from desired angular velocity
        # q_des  = quat_mul(quat_exp(0.5 * quat_deriv(omega * self.dt )), q_curr);
        delta_quat_des = Quaternion(array=[
            0, ang_vel[0] * self.dt, ang_vel[1] * self.dt, ang_vel[2] * self.dt
        ])
        q_des = Quaternion.exp(0.5 * delta_quat_des) * self.ee_quat
        RTR_des = RT.dot(q_des.rotation_matrix)

        #scale angular velocity
        w = 1 - math.tanh(gamma_val)
        rospy.loginfo('w: {}'.format(w))
        ang_vel_rot = 2 * RTR_des.dot(ang_vel)
        rospy.loginfo('omega: {}'.format(ang_vel_rot))

        # Comments: there seems to be no difference when using velocity control.. but maybe
        # it is necessary for torque-controlled robots... need to check with the kuka simulation or panda?

        return lin_vel, ang_vel_rot
示例#8
0
 def gamma(self, x):
     return learn_gamma_fn.get_gamma(np.array(x),
                                     self.classifier,
                                     self.max_dist,
                                     self.reference_points,
                                     dimension=3)
示例#9
0
def modulation_multiGamma_HBS_svm(query_pt,
                                  orig_ds,
                                  learned_gammas,
                                  repulsive_gammaMargin=0.01,
                                  sticky_surface=False):
    '''
        Computes modulated velocity for an environment described by a single gamma function
        and multiple reference points (describing multiple obstacles)
    '''

    dim = len(query_pt)
    gamma_vals = []
    for oo in range(len(learned_gammas)):
        gamma_vals.append(
            learn_gamma_fn.get_gamma(query_pt.reshape(dim, 1),
                                     learned_gammas[oo]['classifier'],
                                     learned_gammas[oo]['max_dist'],
                                     learned_gammas[oo]['reference_point']))

    gamma_vals = np.array(gamma_vals)
    if (len(gamma_vals) == 1
            and gamma_vals < 1.0) or (len(gamma_vals) > 1
                                      and any(gamma_vals < 1.0)):
        return np.zeros(orig_ds.shape)

    if (len(gamma_vals) == 1
            and gamma_vals > 1e9) or (len(gamma_vals) > 1
                                      and any(gamma_vals > 1e9)):
        return orig_ds

    if len(obstacle_reference_points.shape) > 1:
        reference_point = find_closest_reference_point(
            query_pt, obstacle_reference_points)
    else:
        reference_point = obstacle_reference_points

    # Add: Move away from center/reference point in case of a collision
    if 0 < gamma_query < (1 + repulsive_gammaMargin):
        repulsive_power = 5
        repulsive_factor = 5
        repulsive_gamma = (1 + repulsive_gammaMargin)
        repulsive_speed = ((repulsive_gamma / gamma_query)**repulsive_power -
                           repulsive_gamma) * repulsive_factor
        repulsive_reference_direction = query_pt - reference_point
        x_dot_mod = repulsive_speed * (
            1 / 2) * (repulsive_reference_direction /
                      np.linalg.norm(repulsive_reference_direction) +
                      orig_ds / np.linalg.norm(orig_ds))
        print('SLIDING ON SURFACE!')

    elif gamma_query < 0:
        x_dot_mod = np.zeros(orig_ds.shape)

    else:
        # Calculate real modulated dynamical system
        M = modulation_singleGamma_HBS(x=query_pt,
                                       orig_ds=orig_ds,
                                       normal_vec=normal_vec_query,
                                       gamma_pt=gamma_query,
                                       reference_point=reference_point)
        x_dot_mod = np.matmul(M, orig_ds.reshape(-1, 1)).flatten()

    ms = np.log(gamma_vals - 1 + epsilon)
    logprod = ms.sum()
    bs = np.exp(logprod - ms)
    weights = bs / bs.sum()
    weights = weights.T[0]

    # calculate modulated dynamical systems
    x_dot_mods = []
    for oo in range(len(learned_gammas)):
        normal_vec = learn_gamma_fn.get_normal_direction(
            query_pt.reshape(dim, 1),
            classifier=learned_gammas[oo]['classifier'],
            reference_point=learned_gammas[oo]['reference_point'],
            max_dist=learned_gammas[oo]['max_dist'],
            gamma_svm=learned_gammas[oo]['gamma_svm'])
        x_dot_mod = modulation_singleGamma_HBS_multiRef(
            query_pt=query_pt,
            orig_ds=orig_ds,
            gamma_query=gamma_vals[oo][0],
            normal_vec_query=normal_vec.flatten(),
            obstacle_reference_points=learned_gammas[oo]['reference_point'],
            repulsive_gammaMargin=0.01)
        x_dot_mods.append(x_dot_mod)

    # calculate weighted average of magnitude
    x_dot_mags = np.stack([np.linalg.norm(d) for d in x_dot_mods])
    avg_mag = np.dot(weights, x_dot_mags)

    old_way = True
    if old_way:

        # calculate kappa-space dynamical system and weighted average
        kappas = []
        es = null_space_bases(orig_ds)
        bases = [orig_ds] + es
        R = np.stack(bases).T
        R = R / np.linalg.norm(R, axis=0)

        for x_dot_mod in x_dot_mods:
            n_x_dot_mod = x_dot_mod / np.linalg.norm(x_dot_mod)
            # cob stands for change-of-basis
            n_x_dot_mod_cob = np.matmul(R.T, n_x_dot_mod.reshape(-1,
                                                                 1)).flatten()
            n_x_dot_mod_cob = n_x_dot_mod_cob / 1.001
            assert -1-1e-5 <= n_x_dot_mod_cob[0] <= 1+1e-5, \
                'n_x_dot_mod_cob[0] = %0.2f?'%n_x_dot_mod_cob[0]
            if n_x_dot_mod_cob[0] > 1:
                acos = np.arccos(n_x_dot_mod_cob[0] - 1e-5)
            elif n_x_dot_mod_cob[0] < -1:
                acos = np.arccos(n_x_dot_mod_cob[0] + 1e-5)
            else:
                acos = np.arccos(n_x_dot_mod_cob[0])
            if np.linalg.norm(n_x_dot_mod_cob[1:]) == 0:
                kappa = acos * n_x_dot_mod_cob[1:] * 0
            else:
                kappa = acos * n_x_dot_mod_cob[1:] / np.linalg.norm(
                    n_x_dot_mod_cob[1:])
            kappas.append(kappa)
        kappas = np.stack(kappas).T

        # matrix-vector multiplication as a weighted sum of columns
        avg_kappa = np.matmul(kappas, weights.reshape(-1, 1)).flatten()

        # map back to task space
        norm = np.linalg.norm(avg_kappa)
        if norm != 0:
            avg_ds_dir = np.concatenate([
                np.expand_dims(np.cos(norm), 0),
                avg_kappa * np.sin(norm) / norm
            ])
        else:
            avg_ds_dir = np.concatenate(
                [np.expand_dims(np.cos(norm), 0), avg_kappa])
        avg_ds_dir = np.matmul(R, avg_ds_dir.reshape(-1, 1)).flatten()

    else:

        x_dot_mods_normalized = np.zeros((dim, len(learned_gammas)))
        x_dot_mods_np = np.array(x_dot_mods).T

        ind_nonzero = (x_dot_mags > 0)
        if np.sum(ind_nonzero):
            x_dot_mods_normalized[:,
                                  ind_nonzero] = x_dot_mods_np[:, ind_nonzero] / np.tile(
                                      x_dot_mags[ind_nonzero], (dim, 1))
        x_dot_normalized = orig_ds / np.linalg.norm(orig_ds)

        avg_ds_dir = get_directional_weighted_sum(
            reference_direction=x_dot_normalized,
            directions=x_dot_mods_normalized,
            weights=weights,
            total_weight=1)

        x_mod_final = avg_mag * avg_ds_dir.squeeze()

    x_mod_final = avg_mag * avg_ds_dir