import sys import learn_yz_x_ss print('Usage: python [this_script.py] [n_labels] [seed]') n_labels = int(sys.argv[1]) print('n_labels:', n_labels) seed = int(sys.argv[2]) print('seed:', seed) if n_labels not in (100, 600, 1000, 3000): print( 'WARNING: for MNIST, n_labels should be in (100,600,1000,3000), otherwise the number of datapoints might not be a multiple of the number of minibatches.') if n_labels == 100: learn_yz_x_ss.main(3000, n_labels, dataset='mnist_2layer', n_z=50, n_hidden=(300,), seed=seed, alpha=0.1, n_minibatches=100, comment='') else: learn_yz_x_ss.main(3000, n_labels, dataset='mnist_2layer', n_z=50, n_hidden=(500,), seed=seed, alpha=0.1, n_minibatches=200, comment='')
import learn_yz_x_ss import sys learn_yz_x_ss.main(n_passes=3000, n_labeled=int(sys.argv[1]), dataset='mnist_2layer', n_z=50, n_hidden=tuple([int(sys.argv[2])] * int(sys.argv[3])), seed=int(sys.argv[4]), alpha=0.1, comment='')
import learn_yz_x_ss import sys learn_yz_x_ss.main(n_passes=3000, n_labeled=int(sys.argv[1]), dataset='mnist_2layer', n_z=50, n_hidden=tuple([int(sys.argv[2])]*int(sys.argv[3])), seed=int(sys.argv[4]), alpha=0.1, comment='')
import sys import learn_yz_x_ss print 'Usage: python [this_script.py] [n_labels] [seed]' n_labels = int(sys.argv[1]) print 'n_labels:', n_labels seed = int(sys.argv[2]) print 'seed:', seed if n_labels not in (100,600,1000,3000): print 'WARNING: for MNIST, n_labels should be in (100,600,1000,3000), otherwise the number of datapoints might not be a multiple of the number of minibatches.' if n_labels == 100: learn_yz_x_ss.main(3000, n_labels, dataset='mnist_2layer', n_z=50, n_hidden=(300,), seed=seed, alpha=0.1, n_minibatches=100, comment='') else: learn_yz_x_ss.main(3000, n_labels, dataset='mnist_2layer', n_z=50, n_hidden=(500,), seed=seed, alpha=0.1, n_minibatches=200, comment='')