def test_dropout_rbm_hidden_sampling(): new_dropout_rbm = dropout_rbm.DropoutRBM() v = torch.ones(1, 128) probs, states = new_dropout_rbm.hidden_sampling(v, scale=True) assert probs.size(1) == 128 assert states.size(1) == 128 probs, states = new_dropout_rbm.hidden_sampling(v, scale=False) assert probs.size(1) == 128 assert states.size(1) == 128
def test_dropout_rbm_p_setter(): new_dropout_rbm = dropout_rbm.DropoutRBM() try: new_dropout_rbm.p = -1 except: new_dropout_rbm.p = 0 assert new_dropout_rbm.p == 0 try: new_dropout_rbm.p = 'a' except: new_dropout_rbm.p = 0 assert new_dropout_rbm.p == 0
def test_dropout_rbm_reconstruct(): test = torchvision.datasets.KMNIST( root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor()) new_dropout_rbm = dropout_rbm.DropoutRBM(n_visible=784, n_hidden=128, steps=1, learning_rate=0.1, momentum=0, decay=0, temperature=1, dropout=0.5, use_gpu=False) e, v = new_dropout_rbm.reconstruct(test) assert e >= 0 assert v.size(1) == 784
def test_dropout_rbm_p(): new_dropout_rbm = dropout_rbm.DropoutRBM() assert new_dropout_rbm.p == 0.5