def test_residual_dbn_forward(): new_residual_dbn = residual_dbn.ResidualDBN(n_visible=784, n_hidden=(128, 128), steps=(1, 1), learning_rate=(0.1, 0.1), momentum=(0, 0), decay=(0, 0), temperature=(1, 1), use_gpu=False) v = torch.ones(1, 784) probs = new_residual_dbn.forward(v) assert probs.size(1) == 128
def test_residual_dbn_zetta2_setter(): new_residual_dbn = residual_dbn.ResidualDBN() try: new_residual_dbn.zetta2 = "a" except: new_residual_dbn.zetta2 = 0.1 assert new_residual_dbn.zetta2 == 0.1 try: new_residual_dbn.zetta2 = -1 except: new_residual_dbn.zetta2 = 0.1 assert new_residual_dbn.zetta2 == 0.1
def test_residual_dbn_zetta1_setter(): new_residual_dbn = residual_dbn.ResidualDBN() try: new_residual_dbn.zetta1 = 'a' except: new_residual_dbn.zetta1 = 0.1 assert new_residual_dbn.zetta1 == 0.1 try: new_residual_dbn.zetta1 = -1 except: new_residual_dbn.zetta1 = 0.1 assert new_residual_dbn.zetta1 == 0.1
def test_residual_dbn_calculate_residual(): new_residual_dbn = residual_dbn.ResidualDBN( n_visible=784, n_hidden=(128, 128), steps=(1, 1), learning_rate=(0.1, 0.1), momentum=(0, 0), decay=(0, 0), temperature=(1, 1), use_gpu=False, ) v = torch.ones(1, 784) res = new_residual_dbn.calculate_residual(v) assert res.size(1) == 784
def test_residual_dbn_zetta1(): new_residual_dbn = residual_dbn.ResidualDBN() assert new_residual_dbn.zetta1 == 1