def test_dtanh_matrix(): tensor_shape = [random.randint(1, 10) for _ in range(2)] helpers.check_gradient(lambda X: calculate.tanh(X), lambda X: calculate.dtanh(calculate.tanh(X)), f_arg_tensor=numpy.random.random(tensor_shape), f_shape='lin')
def test_dtanh(): helpers.check_gradient(calculate.tanh, lambda x: calculate.dtanh(calculate.tanh(x)), f_shape='lin')
def test_tanh(): assert helpers.approx_equal( calculate.tanh(numpy.array([-1.0, 0.0, 0.5, 1.0])), [-0.761594, 0.0, 0.462117, 0.761594])
def __call__(self, input_vec): return calculate.tanh(input_vec)