def scores(conf): parameters = { 'svm__C': np.logspace(-2, 5, 8), 'svm__gamma': np.logspace(-9, 2, 12), 'svm__kernel': ['linear', 'rbf'] } training_data, training_targets = learning_utils.getData(conf['datasets'], type=conf['type'], split=True, balanced=conf['balanced'], shuffle=True) clf = svm.SVC() pipeline = learning_utils.getPipeline(training_data, clf, 'svm') grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) learning_utils.gs(grid_search, training_data, training_targets)
def scores(conf): parameters = { "svm__C": np.logspace(-2, 5, 8), "svm__gamma": np.logspace(-9, 2, 12), "svm__kernel": ["linear", "rbf"], } training_data, training_targets = learning_utils.getData( conf["datasets"], type=conf["type"], split=True, balanced=conf["balanced"], shuffle=True ) clf = svm.SVC() pipeline = learning_utils.getPipeline(training_data, clf, "svm") grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) learning_utils.gs(grid_search, training_data, training_targets)
def scores(conf): if conf['tree'] == 'tree': parameters = { 'tree__criterion': ['gini', 'entropy'], 'tree__splitter': ['best', 'random'], 'tree__max_features': [.1, .2, .5, 'sqrt', 'log2', None], 'tree__max_depth': range(1, 20), 'tree__presort': [True, False] } clf = tree.DecisionTreeClassifier() elif conf['tree'] == 'random': parameters = { 'tree__criterion': ['gini', 'entropy'], 'tree__n_estimators': range(5, 50), 'tree__max_features': [.1, .2, .5, 'sqrt', 'log2', None], 'tree__max_depth': range(1, 20), 'tree__bootstrap': [True, False], } clf = ensemble.RandomForestClassifier() elif conf['tree'] == 'extra': parameters = { 'tree__criterion': ['gini', 'entropy'], 'tree__n_estimators': range(5, 50), 'tree__max_features': [.1, .2, .5, 'sqrt', 'log2', None], 'tree__max_depth': range(1, 20), 'tree__bootstrap': [True, False], } clf = ensemble.ExtraTreesClassifier() training_data, training_targets = learning_utils.getData(conf['datasets'], type=conf['type'], split=True, balanced=conf['balanced'], shuffle=True) pipeline = learning_utils.getPipeline(training_data, clf, 'tree') grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) learning_utils.gs(grid_search, training_data, training_targets)