def __init__(self, run_name="", aux_class_features=False, aux_grounding_features=False, aux_lang=False, recurrence=False): super(ModelGSFPV, self).__init__() self.model_name = "gs_fpv" + "_mem" if recurrence else "" self.run_name = run_name self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name) self.params = get_current_parameters()["Model"] self.aux_weights = get_current_parameters()["AuxWeights"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) # Auxiliary Objectives self.use_aux_class_features = aux_class_features self.use_aux_grounding_features = aux_grounding_features self.use_aux_lang = aux_lang self.use_recurrence = recurrence self.img_to_features_w = FPVToFPVMap(self.params["img_w"], self.params["img_h"], self.params["resnet_channels"], self.params["feature_channels"]) self.lang_filter_gnd = MapLangSemanticFilter( self.params["emb_size"], self.params["feature_channels"], self.params["relevance_channels"]) self.lang_filter_goal = MapLangSpatialFilter( self.params["emb_size"], self.params["relevance_channels"], self.params["goal_channels"]) self.map_downsample = DownsampleResidual( self.params["map_to_act_channels"], 2) self.recurrence = RecurrentEmbedding( self.params["gs_fpv_feature_map_size"], self.params["gs_fpv_recurrence_size"]) # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"]) in_features_size = self.params[ "gs_fpv_feature_map_size"] + self.params["emb_size"] if self.use_recurrence: in_features_size += self.params["gs_fpv_recurrence_size"] self.features_to_action = DenseMlpBlock2(in_features_size, self.params["mlp_hidden"], 4) # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- self.add_auxiliary( ClassAuxiliary2D("aux_class", None, self.params["feature_channels"], self.params["num_landmarks"], "fpv_features", "lm_pos_fpv", "lm_indices")) self.add_auxiliary( ClassAuxiliary2D("aux_ground", None, self.params["relevance_channels"], 2, "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if self.params["templates"]: self.add_auxiliary( ClassAuxiliary("aux_lang_lm", self.params["emb_size"], self.params["num_landmarks"], 1, "sentence_embed", "lm_mentioned_tplt")) self.add_auxiliary( ClassAuxiliary("aux_lang_side", self.params["emb_size"], self.params["num_sides"], 1, "sentence_embed", "side_mentioned_tplt")) else: self.add_auxiliary( ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) self.action_loss = ActionLoss() self.env_id = None self.prev_instruction = None self.seq_step = 0
def __init__(self, run_name="", model_instance_name=""): super(ModelGSMNBiDomain, self).__init__() self.model_name = "gsmn_bidomain" self.run_name = run_name self.name = model_instance_name if not self.name: self.name = "" self.writer = LoggingSummaryWriter( log_dir=f"runs/{run_name}/{self.name}") self.params = get_current_parameters()["Model"] self.aux_weights = get_current_parameters()["AuxWeights"] self.use_aux = self.params["UseAuxiliaries"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) self.tensor_store = KeyTensorStore() self.aux_losses = AuxiliaryLosses() self.rviz = None if self.params.get("rviz"): self.rviz = RvizInterface( base_name="/gsmn/", map_topics=["semantic_map", "grounding_map", "goal_map"], markerarray_topics=["instruction"]) # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], cam_h_fov=self.params["cam_h_fov"], img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame if self.use_aux[ "grounding_map"] and not self.use_aux["grounding_features"]: self.map_processor_a_w = LangFilterMapProcessor( embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=True) else: self.map_processor_a_w = IdentityMapProcessor( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) if self.use_aux["goal_map"]: self.map_processor_b_r = LangFilterMapProcessor( embed_size=self.params["emb_size"], in_channels=self.params["relevance_channels"], out_channels=self.params["goal_channels"], spatial=self.params["spatial_goal_filter"], cat_out=self.params["cat_rel_and_goal"]) else: self.map_processor_b_r = IdentityMapProcessor( source_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) # Common # -------------------------------------------------------------------------------------------------------------- # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"], dropout=0.0) self.map_transform_w_to_r = MapTransformerBase( source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_r_to_w = MapTransformerBase( source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) # Output an action given the global semantic map if self.params["map_to_action"] == "downsample2": self.map_to_action = EgoMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"]) elif self.params["map_to_action"] == "cropped": self.map_to_action = CroppedMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"]) # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if self.use_aux["class_features"]: self.aux_losses.add_auxiliary( ClassAuxiliary2D("aux_class", self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "fpv_features", "lm_pos_fpv_features", "lm_indices", "tensor_store")) if self.use_aux["grounding_features"]: self.aux_losses.add_auxiliary( ClassAuxiliary2D("aux_ground", self.params["relevance_channels"], 2, self.params["dropout"], "fpv_features_g", "lm_pos_fpv_features", "lm_mentioned", "tensor_store")) if self.use_aux["class_map"]: self.aux_losses.add_auxiliary( ClassAuxiliary2D("aux_class_map", self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "map_S_W", "lm_pos_map", "lm_indices", "tensor_store")) if self.use_aux["grounding_map"]: self.aux_losses.add_auxiliary( ClassAuxiliary2D("aux_grounding_map", self.params["relevance_channels"], 2, self.params["dropout"], "map_R_W", "lm_pos_map", "lm_mentioned", "tensor_store")) if self.use_aux["goal_map"]: self.aux_losses.add_auxiliary( GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"], self.params["global_map_size"], "map_G_W", "goal_pos_map")) # RSS model uses templated data for landmark and side prediction if self.use_aux["language"] and self.params["templates"]: self.aux_losses.add_auxiliary( ClassAuxiliary("aux_lang_lm", self.params["emb_size"], self.params["num_landmarks"], 1, "sentence_embed", "lm_mentioned_tplt")) self.aux_losses.add_auxiliary( ClassAuxiliary("aux_lang_side", self.params["emb_size"], self.params["num_sides"], 1, "sentence_embed", "side_mentioned_tplt")) # CoRL model uses alignment-model groundings elif self.use_aux["language"]: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.aux_losses.add_auxiliary( ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux["l1_regularization"]: self.aux_losses.add_auxiliary( FeatureRegularizationAuxiliary2D("aux_regularize_features", "l1", "map_S_W")) self.aux_losses.add_auxiliary( FeatureRegularizationAuxiliary2D("aux_regularize_features", "l1", "map_R_W")) self.goal_acc_meter = MovingAverageMeter(10) self.aux_losses.print_auxiliary_info() self.action_loss = ActionLoss() self.env_id = None self.prev_instruction = None self.seq_step = 0
def __init__(self, run_name="", model_class=MODEL_RSS, aux_class_features=False, aux_grounding_features=False, aux_class_map=False, aux_grounding_map=False, aux_goal_map=False, aux_lang=False, aux_traj=False, rot_noise=False, pos_noise=False): super(ModelTrajectoryTopDown, self).__init__() self.model_name = "sm_trajectory" + str(model_class) self.model_class = model_class print("Init model of type: ", str(model_class)) self.run_name = run_name self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name) self.params = get_current_parameters()["Model"] self.aux_weights = get_current_parameters()["AuxWeights"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) # Auxiliary Objectives self.use_aux_class_features = aux_class_features self.use_aux_grounding_features = aux_grounding_features self.use_aux_class_on_map = aux_class_map self.use_aux_grounding_on_map = aux_grounding_map self.use_aux_goal_on_map = aux_goal_map self.use_aux_lang = aux_lang self.use_aux_traj_on_map = aux_traj self.use_aux_reg_map = self.aux_weights["regularize_map"] self.use_rot_noise = rot_noise self.use_pos_noise = pos_noise # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap(source_map_size=self.params["global_map_size"], world_in_map_size=self.params["world_size_px"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame if self.use_aux_grounding_on_map and not self.use_aux_grounding_features: self.map_processor_a_w = LangFilterMapProcessor( source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"], embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=True) else: self.map_processor_a_w = IdentityMapProcessor(source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) if self.use_aux_goal_on_map: self.map_processor_b_r = LangFilterMapProcessor(source_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"], embed_size=self.params["emb_size"], in_channels=self.params["relevance_channels"], out_channels=self.params["goal_channels"], spatial=True, cat_out=True) else: self.map_processor_b_r = IdentityMapProcessor(source_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) pred_channels = self.params["goal_channels"] + self.params["relevance_channels"] # Common # -------------------------------------------------------------------------------------------------------------- # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"]) self.map_transform_w_to_r = MapTransformerBase(source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) self.map_transform_r_to_w = MapTransformerBase(source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in self.batch_select = MapBatchSelect() # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep self.map_batch_fill_missing = MapBatchFillMissing(self.params["local_map_size"], self.params["world_size_px"]) # Passing true to freeze will freeze these weights regardless of whether they've been explicitly reloaded or not enable_weight_saving(self.sentence_embedding, "sentence_embedding", alwaysfreeze=False) # Output an action given the global semantic map if self.params["map_to_action"] == "downsample2": self.map_to_action = EgoMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"]) elif self.params["map_to_action"] == "cropped": self.map_to_action = CroppedMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"] ) # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training # and finetuned on all timesteps end-to-end enable_weight_saving(self.map_to_action, "map_to_action", alwaysfreeze=False, neverfreeze=True) # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if aux_class_features: self.add_auxiliary(ClassAuxiliary2D("aux_class", None, self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "fpv_features", "lm_pos_fpv", "lm_indices")) if aux_grounding_features: self.add_auxiliary(ClassAuxiliary2D("aux_ground", None, self.params["relevance_channels"], 2, self.params["dropout"], "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if aux_class_map: self.add_auxiliary(ClassAuxiliary2D("aux_class_map", self.params["world_size_px"], self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "map_s_w_select", "lm_pos_map_select", "lm_indices_select")) if aux_grounding_map: self.add_auxiliary(ClassAuxiliary2D("aux_grounding_map", self.params["world_size_px"], self.params["relevance_channels"], 2, self.params["dropout"], "map_a_w_select", "lm_pos_map_select", "lm_mentioned_select")) if aux_goal_map: self.add_auxiliary(GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"], self.params["world_size_px"], "map_b_w", "goal_pos_map")) # RSS model uses templated data for landmark and side prediction if self.use_aux_lang and self.params["templates"]: self.add_auxiliary(ClassAuxiliary("aux_lang_lm", self.params["emb_size"], self.params["num_landmarks"], 1, "sentence_embed", "lm_mentioned_tplt")) self.add_auxiliary(ClassAuxiliary("aux_lang_side", self.params["emb_size"], self.params["num_sides"], 1, "sentence_embed", "side_mentioned_tplt")) # CoRL model uses alignment-model groundings elif self.use_aux_lang: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.add_auxiliary(ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux_traj_on_map: self.add_auxiliary(PathAuxiliary2D("aux_path", "map_b_r_select", "traj_gt_r_select")) if self.use_aux_reg_map: self.add_auxiliary(FeatureRegularizationAuxiliary2D("aux_regularize_features", None, "l1", "map_s_w_select", "lm_pos_map_select")) self.goal_good_criterion = GoalPredictionGoodCriterion(ok_distance=3.2) self.goal_acc_meter = MovingAverageMeter(10) self.print_auxiliary_info() self.action_loss = ActionLoss() self.env_id = None self.prev_instruction = None self.seq_step = 0
def __init__(self, run_name="", domain="sim"): super(PVN_Stage1_Bidomain_Original, self).__init__() self.model_name = "pvn_stage1" self.run_name = run_name self.domain = domain self.writer = LoggingSummaryWriter( log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.domain}") #self.writer = DummySummaryWriter() self.root_params = get_current_parameters()["ModelPVN"] self.params = self.root_params["Stage1"] self.use_aux = self.root_params["UseAux"] self.aux_weights = self.root_params["AuxWeights"] if self.params.get("weight_override"): aux_weights_override_name = "AuxWeightsRealOverride" if self.domain == "real" else "AuxWeightsSimOverride" aux_weights_override = self.root_params.get( aux_weights_override_name) if aux_weights_override: print( f"Overriding auxiliary weights for domain: {self.domain}") self.aux_weights = dict_merge(self.aux_weights, aux_weights_override) self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) self.tensor_store = KeyTensorStore() self.losses = AuxiliaryLosses() # Auxiliary Objectives self.do_perturb_maps = self.params["perturb_maps"] print("Perturbing maps: ", self.do_perturb_maps) # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.num_feature_channels = self.params[ "feature_channels"] # + params["relevance_channels"] self.num_map_channels = self.params["pathpred_in_channels"] self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], cam_h_fov=self.params["cam_h_fov"], domain=domain, img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.add_init_pos_to_coverage = AddDroneInitPosToCoverage( world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], map_size_px=self.params["local_map_size"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame self.map_processor_grounding = LangFilterMapProcessor( embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=False) ratio_prior_channels = self.params["feature_channels"] # Process the global accumulated map self.path_predictor_lingunet = RatioPathPredictor( self.params["lingunet"], prior_channels_in=self.params["feature_channels"], posterior_channels_in=self.params["pathpred_in_channels"], dual_head=self.params["predict_confidence"], compute_prior=self.params["compute_prior"], use_prior=self.params["use_prior_only"], oob=self.params["clip_observability"]) print("UNet Channels: " + str(self.num_map_channels)) print("Feature Channels: " + str(self.num_feature_channels)) # TODO:O Verify that config has the same randomization parameters (yaw, pos, etc) self.second_transform = self.do_perturb_maps or self.params[ "predict_in_start_frame"] # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"], self.params["emb_dropout"]) self.map_transform_local_to_local = MapTransformer( source_map_size=self.params["local_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_global_to_local = MapTransformer( source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_local_to_global = MapTransformer( source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_s_to_p = self.map_transform_local_to_local self.map_transform_w_to_s = self.map_transform_global_to_local self.map_transform_w_to_r = self.map_transform_global_to_local self.map_transform_r_to_s = self.map_transform_local_to_local self.map_transform_r_to_w = self.map_transform_local_to_global self.map_transform_p_to_w = self.map_transform_local_to_global self.map_transform_p_to_r = self.map_transform_local_to_local # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in self.batch_select = MapBatchSelect() # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep self.map_batch_fill_missing = MapBatchFillMissing( self.params["local_map_size"], self.params["world_size_px"], self.params["world_size_m"]) self.spatialsoftmax = SpatialSoftmax2d() self.visitation_softmax = VisitationSoftmax() #TODO:O Use CroppedMapToActionTriplet in Wrapper as Stage2 # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if self.use_aux["class_features"]: self.losses.add_auxiliary( ClassAuxiliary2D("class_features", self.params["feature_channels"], self.params["num_landmarks"], 0, "fpv_features", "lm_pos_fpv", "lm_indices")) if self.use_aux["grounding_features"]: self.losses.add_auxiliary( ClassAuxiliary2D("grounding_features", self.params["relevance_channels"], 2, 0, "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if self.use_aux["class_map"]: self.losses.add_auxiliary( ClassAuxiliary2D("class_map", self.params["feature_channels"], self.params["num_landmarks"], 0, "S_W_select", "lm_pos_map_select", "lm_indices_select")) if self.use_aux["grounding_map"]: self.losses.add_auxiliary( ClassAuxiliary2D("grounding_map", self.params["relevance_channels"], 2, 0, "R_W_select", "lm_pos_map_select", "lm_mentioned_select")) # CoRL model uses alignment-model groundings if self.use_aux["lang"]: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.losses.add_auxiliary( ClassAuxiliary("lang", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux["regularize_map"]: self.losses.add_auxiliary( FeatureRegularizationAuxiliary2D("regularize_map", "l1", "S_W_select")) lossfunc = self.params["path_loss_function"] if self.params["clip_observability"]: self.losses.add_auxiliary( PathAuxiliary2D("visitation_dist", lossfunc, self.params["clip_observability"], "log_v_dist_s_select", "v_dist_s_ground_truth_select", "SM_S_select")) else: self.losses.add_auxiliary( PathAuxiliary2D("visitation_dist", lossfunc, self.params["clip_observability"], "log_v_dist_s_select", "v_dist_s_ground_truth_select", "SM_S_select")) self.goal_good_criterion = GoalPredictionGoodCriterion( ok_distance=self.params["world_size_px"] * 0.1) self.goal_acc_meter = MovingAverageMeter(10) self.visible_goal_acc_meter = MovingAverageMeter(10) self.invisible_goal_acc_meter = MovingAverageMeter(10) self.visible_goal_frac_meter = MovingAverageMeter(10) self.losses.print_auxiliary_info() self.total_goals = 0 self.correct_goals = 0 self.env_id = None self.env_img = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.should_save_path_overlays = False