algo.reset_ygradient() for point in algo.build_gradient(vars = var): algo.updateBeta(point) perf = gameStrat(strat = 6, totalgames=3,Algo=algo, \ renderme = False) y = evalGames(perf) algo.update_ygradient(y) #update algo updateB = algo.eval() algo.updateBetaFinal(updateB) #Exit Training Conditions if y > 500: break #Print summary of loop outcome print str(algo.BetaFinal) else: for s in [1,2,3,4]: perf = gameStrat(strat = s, totalgames=5) eval = evalGames(perf) print eval
#import optparse # p = optparse.OptionParser() # p.add_option('--foo', '-f', default="yadda") # p.add_option('--bar', '-b') # options, arguments = p.parse_args() if __name__ == "__main__": if len(sys.argv) > 1: algo = Algo() #cheats, init-Betas algo.updateBetaFinal([0,0,0,.1]) env = createEnvNoisy() ind = 0 while True: var = [0,1,2,3] ep = [0.2,0.1,.005,0.01] algo.reset_ygradient() algo.reset_ymisc() for point in algo.build_gradient(vars = var, eps = ep): algo.updateBeta(point)
return 0 #import optparse # p = optparse.OptionParser() # p.add_option('--foo', '-f', default="yadda") # p.add_option('--bar', '-b') # options, arguments = p.parse_args() if __name__ == "__main__": if len(sys.argv) > 1: algo = Algo() #cheats, init-Betas algo.updateBetaFinal([0, 0, 0, .1]) env = createEnvNoisy() ind = 0 while True: var = [0, 1, 2, 3] ep = [0.2, 0.1, .005, 0.01] algo.reset_ygradient() algo.reset_ymisc() for point in algo.build_gradient(vars=var, eps=ep): algo.updateBeta(point)
var = [2] algo.reset_ygradient() for point in algo.build_gradient(vars=var): algo.updateBeta(point) perf = gameStrat(strat = 6, totalgames=3,Algo=algo, \ renderme = False) y = evalGames(perf) algo.update_ygradient(y) #update algo updateB = algo.eval() algo.updateBetaFinal(updateB) #Exit Training Conditions if y > 500: break #Print summary of loop outcome print str(algo.BetaFinal) else: for s in [1, 2, 3, 4]: perf = gameStrat(strat=s, totalgames=5) eval = evalGames(perf) print eval