示例#1
0
    def __init__(self, eps=1., x_edges=[0.], y_edges=[0.]):
        """Create a polygon shape

        Parameters
        ----------
        eps : float
            Permittivity value
        x_edges : List or np.ndarray
            x-coordinates of polygon vertices
        y_edges : List or np.ndarray
            y-coordinates of polygon vertices

        Note
        ----
        The polygon vertices must be supplied in counter-clockwise order.
        """

        # Make extra sure that the last point of the polygon is the same as the 
        # first point
        self.x_edges = bd.hstack((bd.array(x_edges), x_edges[0]))
        self.y_edges = bd.hstack((bd.array(y_edges), y_edges[0]))
        super().__init__(eps)

        if self.compute_ft([[0.], [0.]]) < 0:
            raise ValueError("The edges defined by x_edges and y_edges must be"
            " specified in counter-clockwise order")
示例#2
0
def AB_matrices(omega, g, eps_array, d_array, chi_array=None, pol='TE'):
    """
    Function to calculate A,B coeff
    Output: array of shape [M+1,2]
    """
    assert len(d_array)==len(eps_array)-2, \
        'd_array should have length = num_layers'
    if chi_array is None:
        chi_array = chi(omega, g, eps_array)

    if pol.lower()=='te':
        S_matrices, T_matrices = \
                S_T_matrices_TE(omega, g, eps_array, d_array)
    elif pol.lower()=='tm':
        S_matrices, T_matrices = \
                S_T_matrices_TM(omega, g, eps_array, d_array)
    else:
        raise Exception("Polarization should be 'TE' or 'TM'.")
    A0 = 0
    B0 = 1 
    AB0 = bd.array([A0, B0]).reshape(-1,1)

    # A, B coeff for each layer
    ABs = [AB0, bd.dot(T_matrices[0], bd.dot(S_matrices[0], AB0))]
    for i,S in enumerate(S_matrices[1:]):
        term = bd.dot(S_matrices[i+1], bd.dot(T_matrices[i], ABs[-1]))
        if i < len(S_matrices)-2:
            term = bd.dot(T_matrices[i+1], term)
        ABs.append(term)
    return bd.array(ABs)
示例#3
0
    def __init__(self, *args):
        """
        Initialize a Bravais lattice.
        If a single argument is passed, then

            - 'square': initializes a square lattice.
            - 'hexagonal': initializes a hexagonal lattice.

        with lattice constant a = 1 in both cases.

        If two arguments are passed, they should each be 2-element arrays
        defining the elementary vectors of the lattice.
        """

        # Primitive vectors cell definition
        (a1, a2) = self._parse_input(*args)
        self.a1 = a1[0:2]
        self.a2 = a2[0:2]

        ec_area = bd.norm(bd.cross(a1, a2))
        a3 = bd.array([0, 0, 1])

        # Reciprocal lattice basis vectors
        b1 = 2*np.pi*bd.cross(a2, a3)/bd.dot(a1, bd.cross(a2, a3)) 
        b2 = 2*np.pi*bd.cross(a3, a1)/bd.dot(a2, bd.cross(a3, a1))

        bz_area = bd.norm(bd.cross(b1, b2))

        self.b1 = b1[0:2]
        self.b2 = b2[0:2]

        self.ec_area = ec_area  # Elementary cell area
        self.bz_area = bz_area  # Brillouin zone area
示例#4
0
    def __init__(self,
                 lattice,
                 z_min: float = 0,
                 z_max: float = 0,
                 eps_b: float = 1.):
        """Initialize a ShapesLayer.
        
        Parameters
        ----------
        lattice : Lattice
            A lattice defining the 2D periodicity.
        z_min : float, optional
            z-coordinate of the bottom of the layer.
        z_max : float, optional
            z-coordinate of the top of the layer.
        eps_b : float, optional
            Layer background permittivity.
        """
        super().__init__(lattice, z_min, z_max)

        # Define background permittivity
        self.eps_b = eps_b

        # Initialize average permittivity - needed for guided-mode computation
        self.eps_avg = bd.array(eps_b)

        # Initialize an empty list of shapes
        self.layer_type = 'shapes'
        self.shapes = []
示例#5
0
    def rotate(self, angle):
        """Rotate the polygon around its center of mass by `angle` radians
        """

        rotmat = bd.array([[bd.cos(angle), -bd.sin(angle)], \
                            [bd.sin(angle), bd.cos(angle)]])
        (xj, yj) = (bd.array(self.x_edges), bd.array(self.y_edges))
        com_x = bd.sum((xj + bd.roll(xj, -1)) * (xj * bd.roll(yj, -1) - \
                    bd.roll(xj, -1) * yj))/6/self.area
        com_y = bd.sum((yj + bd.roll(yj, -1)) * (xj * bd.roll(yj, -1) - \
                    bd.roll(xj, -1) * yj))/6/self.area
        new_coords = bd.dot(rotmat, bd.vstack((xj-com_x, yj-com_y)))

        self.x_edges = new_coords[0, :] + com_x
        self.y_edges = new_coords[1, :] + com_y

        return self
示例#6
0
    def run(self, kpoints=np.array([[0], [0]]), pol='te', numeig=10):
        """
        Run the simulation. The computed eigen-frequencies are stored in
        :attr:`PlaneWaveExp.freqs`, and the corresponding eigenvectors - 
        in :attr:`PlaneWaveExp.eigvecs`.
        
        Parameters
        ----------
        kpoints : np.ndarray, optional
            Numpy array of shape (2, Nk) with the [kx, ky] coordinates of the 
            k-vectors over which the simulation is run.
        pol : {'te', 'tm'}, optional
            Polarization of the modes.
        numeig : int, optional
            Number of eigen-frequencies to be stored (starting from lowest).
        """
         
        self._kpoints = kpoints
        self.pol = pol.lower()
        # Change this if switching to a solver that allows for variable numeig
        self.numeig = numeig

        self._compute_ft()
        self._compute_eps_inv()

        freqs = []
        self._eigvecs = []
        for ik, k in enumerate(kpoints.T):
            # Construct the matrix for diagonalization
            if self.pol == 'te':
                mat = bd.dot(bd.transpose(k[:, bd.newaxis] + self.gvec), 
                                (k[:, bd.newaxis] + self.gvec))
                mat = mat * self.eps_inv_mat 
                
            elif self.pol == 'tm':
                Gk = bd.sqrt(bd.square(k[0] + self.gvec[0, :]) + \
                        bd.square(k[1] + self.gvec[1, :]))
                mat = bd.outer(Gk, Gk)
                mat = mat * self.eps_inv_mat
            else:
                raise ValueError("Polarization should be 'TE' or 'TM'")

            # Diagonalize using numpy.linalg.eigh() for now; should maybe switch 
            # to scipy.sparse.linalg.eigsh() in the future
            # NB: we shift the matrix by np.eye to avoid problems at the zero-
            # frequency mode at Gamma
            (freq2, evecs) = bd.eigh(mat + bd.eye(mat.shape[0]))
            freq1 = bd.sqrt(bd.abs(freq2 - bd.ones(mat.shape[0])))/2/np.pi
            i_sort = bd.argsort(freq1)[0:self.numeig]
            freq = freq1[i_sort]
            evec = evecs[:, i_sort]
            freqs.append(freq)
            self._eigvecs.append(evec)

        # Store the eigenfrequencies taking the standard reduced frequency 
        # convention for the units (2pi a/c)    
        self._freqs = bd.array(freqs)
        self.mat = mat
示例#7
0
def chis_3layer(omega, g, eps_array):
    """
    """
    (eps1, eps2, eps3) = [e for e in eps_array]
    chis1 = 1j*bd.sqrt(g**2 - eps1*omega**2)
    chis2 = bd.array(bd.sqrt(-g**2 + eps2*omega**2), dtype=bd.complex)
    chis3 = 1j*bd.sqrt(g**2 - eps3*omega**2)
    
    return (chis1, chis2, chis3)
示例#8
0
def S_T_matrices_TE(omega, g, eps_array, d_array):
    """
    Function to get a list of S and T matrices for D22 calculation
    """
    assert len(d_array)==len(eps_array)-2, \
        'd_array should have length = num_layers'
    chi_array = chi(omega, g, eps_array)

    S11 = (chi_array[:-1] + chi_array[1:])
    S12 = -chi_array[:-1] + chi_array[1:]
    S22 = S11
    S21 = S12
    S_matrices = 0.5 / chi_array[1:].reshape(-1,1,1) * \
        bd.array([[S11,S12],[S21,S22]]).transpose([2,0,1])
    T11 = bd.exp(1j*chi_array[1:-1]*d_array/2)
    T22 = bd.exp(-1j*chi_array[1:-1]*d_array/2)
    T_matrices = bd.array([[T11,bd.zeros(T11.shape)],
        [bd.zeros(T11.shape),T22]]).transpose([2,0,1])
    return S_matrices, T_matrices
示例#9
0
    def __init__(self, eps=1, x_cent=0, y_cent=0, a=0):
        """Create a square shape

        Parameters
        ----------
        eps : float
            Permittivity value
        x_cent : float
            x-coordinate of square center
        y_cent : float
            y-coordinate of square center
        a : float
            square edge length
        """
        self.x_cent = x_cent
        self.y_cent = y_cent
        self.a = a
        x_edges = x_cent + bd.array([-a/2, a/2, a/2, -a/2])
        y_edges = y_cent + bd.array([-a/2, -a/2, a/2, a/2])
        super().__init__(eps, x_edges, y_edges)
示例#10
0
    def __init__(self, eps=1, x_cent=0, y_cent=0, a=0):
        """Create a hexagon shape

        Parameters
        ----------
        eps : float
            Permittivity value
        x_cent : float
            x-coordinate of hexagon center
        y_cent : float
            y-coordinate of hexagon center
        a : float
            hexagon edge length
        """
        self.x_cent = x_cent
        self.y_cent = y_cent
        self.a = a
        x_edges = x_cent + bd.array([a, a/2, -a/2, -a, -a/2, a/2, a])
        y_edges = y_cent + bd.array([0, np.sqrt(3)/2*a, np.sqrt(3)/2*a, 0, \
                    -np.sqrt(3)/2*a, -np.sqrt(3)/2*a, 0])
        super().__init__(eps, x_edges, y_edges) 
示例#11
0
def chi(omega, g, eps):
    """
    Function to compute chi_j, the z-direction wave-vector in each layer j
    Either omega is an array and eps is a number, or vice versa
    Input
        omega           : frequency * 2π , in units of light speed/unit length
        eps             : slab permittivity array
        g               : wave vector along propagation direction 
    Output
        chi             : array of chi_j for all layers j including claddings
    """
    sqarg = bd.array(eps * omega**2 - g**2, dtype=bd.complex)
    return bd.where(bd.real(sqarg) >= 0, bd.sqrt(sqarg), 1j * bd.sqrt(-sqarg))
示例#12
0
    def _parse_input(self, *args):
        if len(args) == 1:
            if args[0] == 'square':
                self.type = 'square'
                a1 = bd.array([1, 0, 0])
                a2 = bd.array([0, 1, 0])
            elif args[0] == 'hexagonal':
                self.type = 'hexagonal'
                a1 = bd.array([0.5, bd.sqrt(3)/2, 0])
                a2 = bd.array([0.5, -bd.sqrt(3)/2, 0])
            else:
                raise ValueError("Lattice can be 'square' or 'hexagonal, "
                    "or defined through two primitive vectors.")

        elif len(args) == 2:
            a1 = bd.hstack((bd.array(args[0]), 0))
            a2 = bd.hstack((bd.array(args[1]), 0))
            if np.inner(a1, a2) == 0:
                self.type = 'rectangular'
            else:
                self.type = 'custom'

        return (a1, a2)
示例#13
0
 def __init__(self, eps=1.):
     """Create a shape
     """
     self.eps = eps
     self.area = bd.real(self.compute_ft(bd.array([[0.], [0.]])))
示例#14
0
def rad_modes(omega: float, g_array: np.ndarray, eps_array: np.ndarray,
            d_array: np.ndarray, pol: str='TE', clad: int=0):
    """ 
    Function to compute the radiative modes of a multi-layer structure
    Input
    g_array         : numpy array of wave vector amplitudes 
    eps_array       : numpy array of slab permittivities, starting with lower 
                      cladding and ending with upper cladding

    d_array         : thicknesses of each layer
    omega           : frequency of the radiative mode
    pol             : polarization, 'te' or 'tm'
    clad            : radiating into cladding index, 0 (lower) or 1 (upper)
    Output
    Xs, Ys          : X, Y coefficients of the modes in every layer
    """

    Xs, Ys = [], []
    for ig, g in enumerate(g_array):
        g_val = max([g, 1e-10])
        # Get the scattering and transfer matrices
        if pol.lower()=='te' and clad==0:
            S_mat, T_mat = S_T_matrices_TE(omega, g_val, eps_array[::-1], 
                            d_array[::-1])
        elif pol.lower()=='te' and clad==1:
            S_mat, T_mat = S_T_matrices_TE(omega, g_val, eps_array, d_array)
        elif pol.lower()=='tm' and clad==0:
            S_mat, T_mat = S_T_matrices_TM(omega, g_val, eps_array[::-1], 
                            d_array[::-1])
        elif pol.lower()=='tm' and clad==1:
            S_mat, T_mat = S_T_matrices_TM(omega, g_val, eps_array, d_array)
        
        # Compute the transfer matrix coefficients
        coeffs = [bd.array([0, 1])]
        coeffs.append(bd.dot(T_mat[0], bd.dot(S_mat[0], coeffs[0])))
        for i, S in enumerate(S_mat[1:-1]):
            T2 = T_mat[i+1]
            T1 = T_mat[i]
            coeffs.append(bd.dot(T2, bd.dot(S, bd.dot(T1, coeffs[-1]))))
        coeffs.append(bd.dot(S_mat[-1], bd.dot(T_mat[-1], coeffs[-1])))
        coeffs = bd.array(coeffs, dtype=bd.complex).transpose()

        # Normalize
        coeffs = coeffs / coeffs[1, -1] 
        if pol=='te':
            c_ind = [0, -1]
            coeffs = coeffs/bd.sqrt(eps_array[c_ind[clad]])/omega
        # Assign correctly based on which cladding the modes radiate to
        if clad == 0:
            Xs.append(coeffs[0, ::-1].ravel())
            Ys.append(coeffs[1, ::-1].ravel())
        elif clad == 1:
            Xs.append(coeffs[1, :].ravel())
            Ys.append(coeffs[0, :].ravel())

    Xs = bd.array(Xs, dtype=bd.complex).transpose()
    Ys = bd.array(Ys, dtype=bd.complex).transpose()

    # Fix the dimension if g_array is an empty list
    if len(g_array)==0:
        Xs = bd.ones((eps_array.size, 1))*Xs
        Ys = bd.ones((eps_array.size, 1))*Ys

    """
    (Xs, Ys) corresponds to the X, W coefficients for TE radiative modes in 
    Andreani and Gerace PRB (2006), and to the Z, Y coefficients for TM modes

    Note that there's an error in the manuscript; within our definitions, the 
    correct statement should be: X3 = 0 for states out-going in the lower 
    cladding; normalize through W1; and W1 = 0 for states out-going in the upper
    cladding; normalize through X3.
    """
    return (Xs, Ys)