示例#1
0
class ImageModel(object):
    """
    this class uses functions of lens_model and source_model to make a lensed image
    """
    def __init__(self,
                 data_class,
                 psf_class,
                 lens_model_class=None,
                 source_model_class=None,
                 lens_light_model_class=None,
                 point_source_class=None,
                 extinction_class=None,
                 kwargs_numerics=None,
                 kwargs_pixelbased=None):
        """
        :param data_class: instance of ImageData() or PixelGrid() class
        :param psf_class: instance of PSF() class
        :param lens_model_class: instance of LensModel() class
        :param source_model_class: instance of LightModel() class describing the source parameters
        :param lens_light_model_class: instance of LightModel() class describing the lens light parameters
        :param point_source_class: instance of PointSource() class describing the point sources
        :param kwargs_numerics: keyword arguments with various numeric description (see ImageNumerics class for options)
        :param kwargs_pixelbased: keyword arguments with various settings related to the pixel-based solver (see SLITronomy documentation)
        """
        self.type = 'single-band'
        self.num_bands = 1
        self.PSF = psf_class
        self.Data = data_class
        self.PSF.set_pixel_size(self.Data.pixel_width)
        if kwargs_numerics is None:
            kwargs_numerics = {}
        self.ImageNumerics = NumericsSubFrame(pixel_grid=self.Data,
                                              psf=self.PSF,
                                              **kwargs_numerics)
        if lens_model_class is None:
            lens_model_class = LensModel(lens_model_list=[])
        self.LensModel = lens_model_class
        if point_source_class is None:
            point_source_class = PointSource(point_source_type_list=[])
        self.PointSource = point_source_class
        self.PointSource.update_lens_model(lens_model_class=lens_model_class)
        x_center, y_center = self.Data.center
        self.PointSource.update_search_window(
            search_window=np.max(self.Data.width),
            x_center=x_center,
            y_center=y_center,
            min_distance=self.Data.pixel_width,
            only_from_unspecified=True)
        self._psf_error_map = self.PSF.psf_error_map_bool

        if source_model_class is None:
            source_model_class = LightModel(light_model_list=[])
        self.SourceModel = source_model_class
        if lens_light_model_class is None:
            lens_light_model_class = LightModel(light_model_list=[])
        self.LensLightModel = lens_light_model_class
        self._kwargs_numerics = kwargs_numerics
        if extinction_class is None:
            extinction_class = DifferentialExtinction(optical_depth_model=[])
        self._extinction = extinction_class
        if kwargs_pixelbased is None:
            kwargs_pixelbased = {}
        else:
            kwargs_pixelbased = kwargs_pixelbased.copy()
        self._pixelbased_bool = self._detect_pixelbased_models()
        if self._pixelbased_bool is True:
            from slitronomy.Util.class_util import create_solver_class  # requirement on SLITronomy is exclusively here
            self.SourceNumerics = self._setup_pixelbased_source_numerics(
                kwargs_numerics, kwargs_pixelbased)
            self.PixelSolver = create_solver_class(
                self.Data, self.PSF, self.ImageNumerics, self.SourceNumerics,
                self.LensModel, self.SourceModel, self.LensLightModel,
                self.PointSource, self._extinction, kwargs_pixelbased)
            self.source_mapping = None  # handled with pixelated operator
        else:
            self.source_mapping = Image2SourceMapping(
                lensModel=lens_model_class, sourceModel=source_model_class)

    def reset_point_source_cache(self, cache=True):
        """
        deletes all the cache in the point source class and saves it from then on

        :param cache: boolean, if True, saves the next occuring point source positions in the cache
        :return: None
        """
        self.PointSource.delete_lens_model_cache()
        self.PointSource.set_save_cache(cache)

    def update_psf(self, psf_class):
        """

        update the instance of the class with a new instance of PSF() with a potentially different point spread function

        :param psf_class:
        :return: no return. Class is updated.
        """
        self.PSF = psf_class
        self.PSF.set_pixel_size(self.Data.pixel_width)
        self.ImageNumerics = NumericsSubFrame(pixel_grid=self.Data,
                                              psf=self.PSF,
                                              **self._kwargs_numerics)

    def source_surface_brightness(self,
                                  kwargs_source,
                                  kwargs_lens=None,
                                  kwargs_extinction=None,
                                  kwargs_special=None,
                                  unconvolved=False,
                                  de_lensed=False,
                                  k=None,
                                  update_pixelbased_mapping=True):
        """

        computes the source surface brightness distribution

        :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
        :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
        :param kwargs_extinction: list of keyword arguments of extinction model
        :param unconvolved: if True: returns the unconvolved light distribution (prefect seeing)
        :param de_lensed: if True: returns the un-lensed source surface brightness profile, otherwise the lensed.
        :param k: integer, if set, will only return the model of the specific index
        :return: 2d array of surface brightness pixels
        """
        if len(self.SourceModel.profile_type_list) == 0:
            return np.zeros(self.Data.num_pixel_axes)
        if self._pixelbased_bool is True:
            return self._source_surface_brightness_pixelbased(
                kwargs_source,
                kwargs_lens=kwargs_lens,
                kwargs_extinction=kwargs_extinction,
                kwargs_special=kwargs_special,
                unconvolved=unconvolved,
                de_lensed=de_lensed,
                k=k,
                update_mapping=update_pixelbased_mapping)
        else:
            return self._source_surface_brightness_analytical(
                kwargs_source,
                kwargs_lens=kwargs_lens,
                kwargs_extinction=kwargs_extinction,
                kwargs_special=kwargs_special,
                unconvolved=unconvolved,
                de_lensed=de_lensed,
                k=k)

    def _source_surface_brightness_analytical(self,
                                              kwargs_source,
                                              kwargs_lens=None,
                                              kwargs_extinction=None,
                                              kwargs_special=None,
                                              unconvolved=False,
                                              de_lensed=False,
                                              k=None):
        """

        computes the source surface brightness distribution

        :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
        :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
        :param kwargs_extinction: list of keyword arguments of extinction model
        :param unconvolved: if True: returns the unconvolved light distribution (prefect seeing)
        :param de_lensed: if True: returns the un-lensed source surface brightness profile, otherwise the lensed.
        :param k: integer, if set, will only return the model of the specific index
        :return: 2d array of surface brightness pixels
        """
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        if de_lensed is True:
            source_light = self.SourceModel.surface_brightness(ra_grid,
                                                               dec_grid,
                                                               kwargs_source,
                                                               k=k)
        else:
            source_light = self.source_mapping.image_flux_joint(ra_grid,
                                                                dec_grid,
                                                                kwargs_lens,
                                                                kwargs_source,
                                                                k=k)
            source_light *= self._extinction.extinction(
                ra_grid,
                dec_grid,
                kwargs_extinction=kwargs_extinction,
                kwargs_special=kwargs_special)
        source_light_final = self.ImageNumerics.re_size_convolve(
            source_light, unconvolved=unconvolved)
        return source_light_final

    def _source_surface_brightness_pixelbased(self,
                                              kwargs_source,
                                              kwargs_lens=None,
                                              kwargs_extinction=None,
                                              kwargs_special=None,
                                              unconvolved=False,
                                              de_lensed=False,
                                              k=None,
                                              update_mapping=True):
        """
        computes the source surface brightness distribution, using pixel-based solver for light profiles (from SLITronomy)

        :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
        :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
        :param kwargs_extinction: list of keyword arguments of extinction model
        :param unconvolved: if True: returns the unconvolved light distribution (prefect seeing)
        :param de_lensed: if True: returns the un-lensed source surface brightness profile, otherwise the lensed.
        :param k: integer, if set, will only return the model of the specific index
        :param update_mapping: if False, prevent the pixelated lensing mapping to be updated (saves computation time if previously computed). 
        :return: 2d array of surface brightness pixels
        """
        ra_grid, dec_grid = self.SourceNumerics.coordinates_evaluate
        source_light = self.SourceModel.surface_brightness(ra_grid,
                                                           dec_grid,
                                                           kwargs_source,
                                                           k=k)
        if de_lensed is True:
            source_light = self.SourceNumerics.re_size_convolve(
                source_light, unconvolved=unconvolved)
        else:
            source_mapping = self.PixelSolver.lensingOperator
            source_light = source_mapping.source2image(
                source_light,
                kwargs_lens=kwargs_lens,
                kwargs_special=kwargs_special,
                update_mapping=update_mapping,
                original_source_grid=True)
            source_light = self.ImageNumerics.re_size_convolve(
                source_light, unconvolved=unconvolved)
        # undo flux normalization performed by re_size_convolve (already handled in SLITronomy)
        source_light_final = source_light / self.Data.pixel_width**2
        return source_light_final

    def lens_surface_brightness(self,
                                kwargs_lens_light,
                                unconvolved=False,
                                k=None):
        """

        computes the lens surface brightness distribution

        :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
        :param unconvolved: if True, returns unconvolved surface brightness (perfect seeing), otherwise convolved with PSF kernel
        :return: 2d array of surface brightness pixels
        """
        if self._pixelbased_bool is True:
            if unconvolved is True:
                raise ValueError(
                    "Lens light pixel-based modelling does not perform deconvolution"
                )
            return self._lens_surface_brightness_pixelbased(kwargs_lens_light,
                                                            k=k)
        else:
            return self._lens_surface_brightness_analytical(
                kwargs_lens_light, unconvolved=unconvolved, k=k)

    def _lens_surface_brightness_analytical(self,
                                            kwargs_lens_light,
                                            unconvolved=False,
                                            k=None):
        """

        computes the lens surface brightness distribution

        :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
        :param unconvolved: if True, returns unconvolved surface brightness (perfect seeing), otherwise convolved with PSF kernel
        :return: 2d array of surface brightness pixels
        """
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        lens_light = self.LensLightModel.surface_brightness(ra_grid,
                                                            dec_grid,
                                                            kwargs_lens_light,
                                                            k=k)
        lens_light_final = self.ImageNumerics.re_size_convolve(
            lens_light, unconvolved=unconvolved)
        return lens_light_final

    def _lens_surface_brightness_pixelbased(self, kwargs_lens_light, k=None):
        """

        computes the lens surface brightness distribution , using pixel-based solver for light profiles (from SLITronomy)
        Important: SLITronomy does not solve for deconvolved lens light, hence the returned map is convolved with the PSF.

        :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
        :return: 2d array of surface brightness pixels
        """
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        lens_light = self.LensLightModel.surface_brightness(ra_grid,
                                                            dec_grid,
                                                            kwargs_lens_light,
                                                            k=k)
        lens_light_final = util.array2image(lens_light)
        return lens_light_final

    def point_source(self,
                     kwargs_ps,
                     kwargs_lens=None,
                     kwargs_special=None,
                     unconvolved=False,
                     k=None):
        """

        computes the point source positions and paints PSF convolutions on them

        :param kwargs_ps:
        :param k:
        :return:
        """
        point_source_image = np.zeros((self.Data.num_pixel_axes))
        if unconvolved or self.PointSource is None:
            return point_source_image
        ra_pos, dec_pos, amp = self.PointSource.point_source_list(
            kwargs_ps, kwargs_lens=kwargs_lens, k=k)
        ra_pos, dec_pos = self._displace_astrometry(
            ra_pos, dec_pos, kwargs_special=kwargs_special)
        point_source_image += self.ImageNumerics.point_source_rendering(
            ra_pos, dec_pos, amp)
        return point_source_image

    def image(self,
              kwargs_lens=None,
              kwargs_source=None,
              kwargs_lens_light=None,
              kwargs_ps=None,
              kwargs_extinction=None,
              kwargs_special=None,
              unconvolved=False,
              source_add=True,
              lens_light_add=True,
              point_source_add=True):
        """

        make an image with a realisation of linear parameter values "param"

        :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
        :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
        :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
        :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions
        :param unconvolved: if True: returns the unconvolved light distribution (prefect seeing)
        :param source_add: if True, compute source, otherwise without
        :param lens_light_add: if True, compute lens light, otherwise without
        :param point_source_add: if True, add point sources, otherwise without
        :return: 2d array of surface brightness pixels of the simulation
        """
        model = np.zeros((self.Data.num_pixel_axes))
        if source_add is True:
            model += self.source_surface_brightness(
                kwargs_source,
                kwargs_lens,
                kwargs_extinction=kwargs_extinction,
                kwargs_special=kwargs_special,
                unconvolved=unconvolved)
        if lens_light_add is True:
            model += self.lens_surface_brightness(kwargs_lens_light,
                                                  unconvolved=unconvolved)
        if point_source_add is True:
            model += self.point_source(kwargs_ps,
                                       kwargs_lens,
                                       kwargs_special=kwargs_special,
                                       unconvolved=unconvolved)
        return model

    def extinction_map(self, kwargs_extinction=None, kwargs_special=None):
        """
        differential extinction per pixel

        :param kwargs_extinction: list of keyword arguments corresponding to the optical depth models tau, such that extinction is exp(-tau)
        :param kwargs_special: keyword arguments, additional parameter to the extinction
        :return: 2d array of size of the image
        """
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        extinction = self._extinction.extinction(
            ra_grid,
            dec_grid,
            kwargs_extinction=kwargs_extinction,
            kwargs_special=kwargs_special)
        extinction_array = np.ones_like(ra_grid) * extinction
        extinction = self.ImageNumerics.re_size_convolve(extinction_array,
                                                         unconvolved=True)
        return extinction

    def _displace_astrometry(self, x_pos, y_pos, kwargs_special=None):
        """
        displaces point sources by shifts specified in kwargs_special

        :param x_pos: list of point source positions according to point source model list
        :param y_pos: list of point source positions according to point source model list
        :param kwargs_special: keyword arguments, can contain 'delta_x_image' and 'delta_y_image'
        The list is defined in order of the image positions
        :return: shifted image positions in same format as input
        """
        if kwargs_special is not None:
            if 'delta_x_image' in kwargs_special:
                delta_x, delta_y = kwargs_special[
                    'delta_x_image'], kwargs_special['delta_y_image']
                delta_x_new = np.zeros(len(x_pos))
                delta_x_new[0:len(delta_x)] = delta_x[:]
                delta_y_new = np.zeros(len(y_pos))
                delta_y_new[0:len(delta_y)] = delta_y
                x_pos = x_pos + delta_x_new
                y_pos = y_pos + delta_y_new
        return x_pos, y_pos

    def _detect_pixelbased_models(self):
        """
        Returns True if light profiles specific to pixel-based modelling are present in source model list.
        Otherwise returns False.

        Currently, pixel-based light profiles are: 'SLIT_STARLETS', 'SLIT_STARLETS_GEN2'.
        """
        source_model_list = self.SourceModel.profile_type_list
        if 'SLIT_STARLETS' in source_model_list or 'SLIT_STARLETS_GEN2' in source_model_list:
            if len(source_model_list) > 1:
                raise ValueError(
                    "'SLIT_STARLETS' or 'SLIT_STARLETS_GEN2' must be the only source model list for pixel-based modelling"
                )
            return True
        return False

    def _setup_pixelbased_source_numerics(self, kwargs_numerics,
                                          kwargs_pixelbased):
        """
        Check if model requirement are compatible with support pixel-based solver,
        and creates a new numerics class specifically for source plane.

        :param kwargs_numerics: keyword argument with various numeric description (see ImageNumerics class for options)
        :param kwargs_pixelbased: keyword argument with various settings related to the pixel-based solver (see SLITronomy documentation)
        """
        # check that the required convolution type is compatible with pixel-based modelling (in current implementation)
        psf_type = self.PSF.psf_type
        supersampling_convolution = kwargs_numerics.get(
            'supersampling_convolution', False)
        supersampling_factor = kwargs_numerics.get('supersampling_factor', 1)
        compute_mode = kwargs_numerics.get('compute_mode', 'regular')
        if psf_type not in ['PIXEL', 'NONE']:
            raise ValueError(
                "Only convolution using a pixelated kernel is supported for pixel-based modelling"
            )
        if compute_mode != 'regular':
            raise ValueError(
                "Only regular coordinate grid is supported for pixel-based modelling"
            )
        if (supersampling_convolution is True and supersampling_factor > 1):
            raise ValueError(
                "Only non-supersampled convolution is supported for pixel-based modelling"
            )

        # setup the source numerics with a (possibily) different supersampling resolution
        supersampling_factor_source = kwargs_pixelbased.pop(
            'supersampling_factor_source', 1)
        kwargs_numerics_source = kwargs_numerics.copy()
        kwargs_numerics_source[
            'supersampling_factor'] = supersampling_factor_source
        kwargs_numerics_source['compute_mode'] = 'regular'
        source_numerics_class = NumericsSubFrame(pixel_grid=self.Data,
                                                 psf=self.PSF,
                                                 **kwargs_numerics_source)
        return source_numerics_class
示例#2
0
class ImageModel(object):
    """
    this class uses functions of lens_model and source_model to make a lensed image
    """
    def __init__(self,
                 data_class,
                 psf_class,
                 lens_model_class=None,
                 source_model_class=None,
                 lens_light_model_class=None,
                 point_source_class=None,
                 extinction_class=None,
                 kwargs_numerics={}):
        """
        :param data_class: instance of ImageData() or PixelGrid() class
        :param psf_class: instance of PSF() class
        :param lens_model_class: instance of LensModel() class
        :param source_model_class: instance of LightModel() class describing the source parameters
        :param lens_light_model_class: instance of LightModel() class describing the lens light parameters
        :param point_source_class: instance of PointSource() class describing the point sources
        :param kwargs_numerics: keyword argument with various numeric description (see ImageNumerics class for options)
        """
        self.type = 'single-band'
        self.PSF = psf_class
        self.Data = data_class
        self.PSF.set_pixel_size(self.Data.pixel_width)
        self.ImageNumerics = NumericsSubFrame(pixel_grid=self.Data,
                                              psf=self.PSF,
                                              **kwargs_numerics)
        if lens_model_class is None:
            lens_model_class = LensModel(lens_model_list=[])
        self.LensModel = lens_model_class
        if point_source_class is None:
            point_source_class = PointSource(point_source_type_list=[])
        self.PointSource = point_source_class
        self.PointSource.update_lens_model(lens_model_class=lens_model_class)
        x_center, y_center = self.Data.center
        self.PointSource.update_search_window(
            search_window=np.max(self.Data.width),
            x_center=x_center,
            y_center=y_center,
            min_distance=self.Data.pixel_width)
        self._psf_error_map = self.PSF.psf_error_map_bool

        if source_model_class is None:
            source_model_class = LightModel(light_model_list=[])
        self.SourceModel = source_model_class
        if lens_light_model_class is None:
            lens_light_model_class = LightModel(light_model_list=[])
        self.LensLightModel = lens_light_model_class
        self.source_mapping = Image2SourceMapping(
            lensModel=lens_model_class, sourceModel=source_model_class)
        self.num_bands = 1
        self._kwargs_numerics = kwargs_numerics
        if extinction_class is None:
            extinction_class = DifferentialExtinction(optical_depth_model=[])
        self._extinction = extinction_class

    def reset_point_source_cache(self, bool=True):
        """
        deletes all the cache in the point source class and saves it from then on

        :param bool: boolean, if True, saves the next occuring point source positions in the cache
        :return: None
        """
        self.PointSource.delete_lens_model_cache()
        self.PointSource.set_save_cache(bool)

    def update_psf(self, psf_class):
        """

        update the instance of the class with a new instance of PSF() with a potentially different point spread function

        :param psf_class:
        :return: no return. Class is updated.
        """
        self.PSF = psf_class
        self.PSF.set_pixel_size(self.Data.pixel_width)
        self.ImageNumerics = NumericsSubFrame(pixel_grid=self.Data,
                                              psf=self.PSF,
                                              **self._kwargs_numerics)

    def source_surface_brightness(self,
                                  kwargs_source,
                                  kwargs_lens=None,
                                  kwargs_extinction=None,
                                  kwargs_special=None,
                                  unconvolved=False,
                                  de_lensed=False,
                                  k=None):
        """

        computes the source surface brightness distribution

        :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
        :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
        :param kwargs_extinction: list of keyword arguments of extinction model
        :param unconvolved: if True: returns the unconvolved light distribution (prefect seeing)
        :param de_lensed: if True: returns the un-lensed source surface brightness profile, otherwise the lensed.
        :param k: integer, if set, will only return the model of the specific index
        :return: 1d array of surface brightness pixels
        """
        if len(self.SourceModel.profile_type_list) == 0:
            return np.zeros((self.Data.num_pixel_axes))
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        if de_lensed is True:
            source_light = self.SourceModel.surface_brightness(ra_grid,
                                                               dec_grid,
                                                               kwargs_source,
                                                               k=k)
        else:
            source_light = self.source_mapping.image_flux_joint(ra_grid,
                                                                dec_grid,
                                                                kwargs_lens,
                                                                kwargs_source,
                                                                k=k)
            source_light *= self._extinction.extinction(
                ra_grid,
                dec_grid,
                kwargs_extinction=kwargs_extinction,
                kwargs_special=kwargs_special)
        source_light_final = self.ImageNumerics.re_size_convolve(
            source_light, unconvolved=unconvolved)
        return source_light_final

    def lens_surface_brightness(self,
                                kwargs_lens_light,
                                unconvolved=False,
                                k=None):
        """

        computes the lens surface brightness distribution

        :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
        :param unconvolved: if True, returns unconvolved surface brightness (perfect seeing), otherwise convolved with PSF kernel
        :return: 1d array of surface brightness pixels
        """
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        lens_light = self.LensLightModel.surface_brightness(ra_grid,
                                                            dec_grid,
                                                            kwargs_lens_light,
                                                            k=k)
        lens_light_final = self.ImageNumerics.re_size_convolve(
            lens_light, unconvolved=unconvolved)
        return lens_light_final

    def point_source(self,
                     kwargs_ps,
                     kwargs_lens=None,
                     kwargs_special=None,
                     unconvolved=False,
                     k=None):
        """

        computes the point source positions and paints PSF convolutions on them

        :param kwargs_ps:
        :param k:
        :return:
        """
        point_source_image = np.zeros((self.Data.num_pixel_axes))
        if unconvolved or self.PointSource is None:
            return point_source_image
        ra_pos, dec_pos, amp, n_points = self.PointSource.linear_response_set(
            kwargs_ps, kwargs_lens, with_amp=True, k=k)
        for i in range(n_points):
            point_source_image += self.ImageNumerics.point_source_rendering(
                ra_pos[i], dec_pos[i], amp[i])
        return point_source_image

    def image(self,
              kwargs_lens=None,
              kwargs_source=None,
              kwargs_lens_light=None,
              kwargs_ps=None,
              kwargs_extinction=None,
              kwargs_special=None,
              unconvolved=False,
              source_add=True,
              lens_light_add=True,
              point_source_add=True):
        """

        make an image with a realisation of linear parameter values "param"

        :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles
        :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles
        :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles
        :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions
        :param unconvolved: if True: returns the unconvolved light distribution (prefect seeing)
        :param source_add: if True, compute source, otherwise without
        :param lens_light_add: if True, compute lens light, otherwise without
        :param point_source_add: if True, add point sources, otherwise without
        :return: 1d array of surface brightness pixels of the simulation
        """
        model = np.zeros((self.Data.num_pixel_axes))
        if source_add is True:
            model += self.source_surface_brightness(
                kwargs_source,
                kwargs_lens,
                kwargs_extinction=kwargs_extinction,
                kwargs_special=kwargs_special,
                unconvolved=unconvolved)
        if lens_light_add is True:
            model += self.lens_surface_brightness(kwargs_lens_light,
                                                  unconvolved=unconvolved)
        if point_source_add is True:
            model += self.point_source(kwargs_ps,
                                       kwargs_lens,
                                       kwargs_special=kwargs_special,
                                       unconvolved=unconvolved)
        return model

    def extinction_map(self, kwargs_extinction=None, kwargs_special=None):
        """
        differential extinction per pixel

        :param kwargs_extinction: list of keyword arguments corresponding to the optical depth models tau, such that extinction is exp(-tau)
        :param kwargs_special: keyword arguments, additional parameter to the extinction
        :return: 2d array of size of the image
        """
        ra_grid, dec_grid = self.ImageNumerics.coordinates_evaluate
        extinction = self._extinction.extinction(
            ra_grid,
            dec_grid,
            kwargs_extinction=kwargs_extinction,
            kwargs_special=kwargs_special)
        extinction_array = np.ones_like(ra_grid) * extinction
        extinction = self.ImageNumerics.re_size_convolve(extinction_array,
                                                         unconvolved=True)
        return extinction