def assert_lens_integrals(self, Model, kwargs): """ checks whether the integral in projection of the density_lens() function is the convergence :param Model: lens model instance :param kwargs: keyword arguments of lens model :return: """ lensModel = Model() int_profile = ProfileIntegrals(lensModel) r = 2. kappa_num = int_profile.density_2d(r, kwargs, lens_param=True) f_xx, f_yy, f_xy = lensModel.hessian(r, 0, **kwargs) kappa = 1./2 * (f_xx + f_yy) npt.assert_almost_equal(kappa_num, kappa, decimal=2)
def assert_lens_integrals(self, Model, kwargs, pi_convention=True): """ checks whether the integral in projection of the density_lens() function is the convergence :param Model: lens model instance :param kwargs: keyword arguments of lens model :return: """ lensModel = Model() int_profile = ProfileIntegrals(lensModel) r = 2. kappa_num = int_profile.density_2d(r, kwargs, lens_param=True) f_xx, f_xy, f_yx, f_yy = lensModel.hessian(r, 0, **kwargs) kappa = 1. / 2 * (f_xx + f_yy) npt.assert_almost_equal(kappa_num, kappa, decimal=2) try: del kwargs['center_x'] del kwargs['center_y'] except: pass bool_mass_2d_lens = False try: mass_2d = lensModel.mass_2d_lens(r, **kwargs) bool_mass_2d_lens = True except: pass if bool_mass_2d_lens: alpha_x, alpha_y = lensModel.derivatives(r, 0, **kwargs) alpha = np.sqrt(alpha_x**2 + alpha_y**2) if pi_convention: npt.assert_almost_equal(alpha, mass_2d / r / np.pi, decimal=5) else: npt.assert_almost_equal(alpha, mass_2d / r, decimal=5) try: mass_3d = lensModel.mass_3d_lens(r, **kwargs) bool_mass_3d_lens = True except: bool_mass_3d_lens = False if bool_mass_3d_lens: mass_3d_num = int_profile.mass_enclosed_3d(r, kwargs_profile=kwargs, lens_param=True) print(mass_3d, mass_3d_num, 'test num') npt.assert_almost_equal(mass_3d / mass_3d_num, 1, decimal=2)
def assert_lens_integrals(self, Model, kwargs): """ checks whether the integral in projection of the density_lens() function is the convergence :param Model: lens model instance :param kwargs: keyword arguments of lens model :return: """ lensModel = Model() int_profile = ProfileIntegrals(lensModel) r = 2. kappa_num = int_profile.density_2d(r, kwargs, lens_param=True) f_xx, f_yy, f_xy = lensModel.hessian(r, 0, **kwargs) kappa = 1. / 2 * (f_xx + f_yy) npt.assert_almost_equal(kappa_num, kappa, decimal=2) if hasattr(lensModel, 'mass_2d_lens'): mass_2d = lensModel.mass_2d_lens(r, **kwargs) alpha_x, alpha_y = lensModel.derivatives(r, 0, **kwargs) alpha = np.sqrt(alpha_x**2 + alpha_y**2) npt.assert_almost_equal(alpha, mass_2d / r / np.pi, decimal=5)
def assert_integrals(self, Model, kwargs): lensModel = Model() int_profile = ProfileIntegrals(lensModel) r = 2. density2d_num = int_profile.density_2d(r, kwargs) density2d = lensModel.density_2d(r, 0, **kwargs) npt.assert_almost_equal(density2d / density2d_num, 1., decimal=1) kwargs['center_x'] = 0 kwargs['center_y'] = 0 mass_2d_num = int_profile.mass_enclosed_2d(r, kwargs) del kwargs['center_x'] del kwargs['center_y'] mass_2d = lensModel.mass_2d(r, **kwargs) npt.assert_almost_equal(mass_2d / mass_2d_num, 1, decimal=1) kwargs['center_x'] = 0 kwargs['center_y'] = 0 mass_3d_num = int_profile.mass_enclosed_3d(r, kwargs) del kwargs['center_x'] del kwargs['center_y'] mass_3d = lensModel.mass_3d(r, **kwargs) npt.assert_almost_equal(mass_3d / mass_3d_num, 1, decimal=2)