def model_plot(self, save_plot=False, show_plot=True): """ Show the fitting plot based on lenstronomy.Plots.model_plot.ModelPlot """ # this is the linear inversion. The kwargs will be updated afterwards modelPlot = ModelPlot( self.fitting_specify_class.kwargs_data_joint['multi_band_list'], self.fitting_specify_class.kwargs_model, self.kwargs_result, arrow_size=0.02, cmap_string="gist_heat", likelihood_mask_list=self.fitting_specify_class. kwargs_likelihood['image_likelihood_mask_list']) f, axes = plt.subplots(3, 3, figsize=(16, 16), sharex=False, sharey=False) modelPlot.data_plot(ax=axes[0, 0], text="Data") modelPlot.model_plot(ax=axes[0, 1]) modelPlot.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6) modelPlot.decomposition_plot(ax=axes[1, 0], text='Host galaxy', lens_light_add=True, unconvolved=True) modelPlot.decomposition_plot(ax=axes[1, 1], text='Host galaxy convolved', lens_light_add=True) modelPlot.decomposition_plot(ax=axes[1, 2], text='All components convolved', source_add=True, lens_light_add=True, point_source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2, 0], text='Data - Point Source', point_source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2, 1], text='Data - host galaxy', lens_light_add=True) modelPlot.subtract_from_data_plot( ax=axes[2, 2], text='Data - host galaxy - Point Source', lens_light_add=True, point_source_add=True) f.tight_layout() if save_plot == True: plt.savefig('{0}_model.pdf'.format(self.savename)) if show_plot == True: plt.show() else: plt.close()
def test_joint_linear(self): multi_band_list = [[ self.kwargs_data, self.kwargs_psf, self.kwargs_numerics ], [self.kwargs_data, self.kwargs_psf, self.kwargs_numerics]] lensPlot = ModelPlot(multi_band_list, self.kwargs_model, self.kwargs_params, arrow_size=0.02, cmap_string="gist_heat", multi_band_type='joint-linear', bands_compute=[True, False]) f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax = lensPlot.data_plot(ax=ax, numPix=10, deltaPix_source=0.1, v_min=None, v_max=None, with_caustics=False, caustic_color='yellow', fsize=15, plot_scale='linear') plt.close() f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax = lensPlot.model_plot(ax=ax, numPix=10, deltaPix_source=0.1, v_min=None, v_max=None, with_caustics=False, caustic_color='yellow', fsize=15, plot_scale='linear') plt.close() f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax = lensPlot.convergence_plot(ax=ax, numPix=10, deltaPix_source=0.1, v_min=None, v_max=None, with_caustics=False, caustic_color='yellow', fsize=15, plot_scale='linear') plt.close() f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax = lensPlot.normalized_residual_plot(ax=ax) plt.close() f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax = lensPlot.magnification_plot(ax=ax) plt.close() f, ax = plt.subplots(1, 1, figsize=(4, 4)) ax = lensPlot.decomposition_plot(ax=ax) plt.close()
fontsize=15, color='k') plt.show() modelPlot = ModelPlot(multi_band_list, kwargs_model, kwargs_result, arrow_size=0.02, cmap_string="gist_heat", likelihood_mask_list=[QSO_msk]) f, axes = plt.subplots(3, 3, figsize=(16, 16), sharex=False, sharey=False) modelPlot.data_plot(ax=axes[0, 0], text="Data") modelPlot.model_plot(ax=axes[0, 1]) modelPlot.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6) modelPlot.decomposition_plot(ax=axes[1, 0], text='Host galaxy', source_add=True, unconvolved=True) modelPlot.decomposition_plot(ax=axes[1, 1], text='Host galaxy convolved', source_add=True) modelPlot.decomposition_plot(ax=axes[1, 2], text='All components convolved', source_add=True, lens_light_add=True, point_source_add=True)
def plot_modeling(self, kwargs_result, center=[0, 0], deltaPix_s=0.03, numPix_s=None, text_source='', data_index=0, text='sys', img_name='sys', font_size=25, scale_size=0.1, fig_close=False, likelihood_mask_list=None): """ a function to show modeling process containing data, reconstructed image, residual map, and reconstructed source. :param kwargs_result: modeling results :param deltaPix: pixel scale in the source plane :param numPix: pixel numbers in the source plane :param multi_band_type:string, e.g., 'joint-linear', 'single-band' :param text: string, label of reconstructed image :param text_source:string, label of reconstructed source :param img_name: string, label of saved images :param font_size: font_size :return: """ model_plot = ModelPlot(self.multi_band_list, self.kwargs_model, kwargs_result, arrow_size=0.02, cmap_string="gist_heat", multi_band_type=self.multi_band_type, likelihood_mask_list=likelihood_mask_list) num_bands = len(self.kwargs_data_joint['multi_band_list']) if num_bands > 1: f, axes = plt.subplots(num_bands, 3, figsize=(22, 18)) else: f, axes = plt.subplots(num_bands, 3, figsize=(22, 6)) for band_index in range(num_bands): if num_bands > 1: ax1 = axes[band_index, 0] ax2 = axes[band_index, 1] ax3 = axes[band_index, 2] img_index = band_index else: ax1 = axes[0] ax2 = axes[1] ax3 = axes[2] img_index = data_index model_plot.data_plot(ax=ax1, band_index=band_index, text='Observed' + text, font_size=font_size) model_plot.model_plot(ax=ax2, image_names=True, band_index=band_index, font_size=font_size, text='Modeled' + text) model_plot.normalized_residual_plot(ax=ax3, v_min=-6, v_max=6, band_index=band_index, font_size=font_size) f.savefig(img_name + 'residual.pdf', bbox_inches='tight') if fig_close: plt.close(f) if numPix_s is None: numPix_s = self.kwargs_data_joint['multi_band_list'][0][0][ 'image_data'].shape[0] f_s, axes_s = plt.subplots(1, 1, figsize=(9, 6)) model_plot.source_plot(ax=axes_s, deltaPix_source=deltaPix_s, numPix=numPix_s, center=center, band_index=band_index, scale_size=scale_size, font_size=font_size, text="Source" + text_source, plot_scale='log', v_min=-5, with_caustics=True) f_s.savefig(img_name + 'source.pdf') if fig_close: plt.close(f_s)
def fit_qso_multiband(QSO_im_list, psf_ave_list, psf_std_list=None, source_params=None,ps_param=None, background_rms_list=[0.04]*5, pix_sz = 0.168, exp_time = 300., fix_n=None, image_plot = True, corner_plot=True, flux_ratio_plot=True, deep_seed = False, fixcenter = False, QSO_msk_list=None, QSO_std_list=None, tag = None, no_MCMC= False, pltshow = 1, new_band_seq=None): ''' A quick fit for the QSO image with (so far) single sersice + one PSF. The input psf noise is optional. Parameter -------- QSO_im: An array of the QSO image. psf_ave: The psf image. psf_std: The psf noise, optional. source_params: The prior for the source. Default is given. background_rms: default as 0.04 exp_time: default at 2400. deep_seed: if Ture, more mcmc steps will be performed. tag: The name tag for save the plot Return -------- Will output the fitted image (Set image_plot = True), the corner_plot and the flux_ratio_plot. source_result, ps_result, image_ps, image_host To do -------- ''' # data specifics need to set up based on the data situation background_rms_list = background_rms_list # background noise per pixel (Gaussian) exp_time = exp_time # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit) numPix = len(QSO_im_list[0]) # cutout pixel size deltaPix = pix_sz psf_type = 'PIXEL' # 'gaussian', 'pixel', 'NONE' kernel_list = psf_ave_list if new_band_seq == None: new_band_seq= range(len(QSO_im_list)) # if psf_std_list is not None: # kwargs_numerics_list = [{'subgrid_res': 1, 'psf_subgrid': False, 'psf_error_map': True}] * len(QSO_im_list) #Turn on the PSF error map # else: kwargs_numerics_list = [{'supersampling_factor': 1, 'supersampling_convolution': False}] * len(QSO_im_list) if source_params is None: # here are the options for the host galaxy fitting fixed_source = [] kwargs_source_init = [] kwargs_source_sigma = [] kwargs_lower_source = [] kwargs_upper_source = [] # Disk component, as modelled by an elliptical Sersic profile if fix_n == None: fixed_source.append({}) # we fix the Sersic index to n=1 (exponential) kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': 2., 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.}) kwargs_source_sigma.append({'n_sersic': 0.5, 'R_sersic': 0.5, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}) kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.1, 'n_sersic': 0.3, 'center_x': -10, 'center_y': -10}) kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3., 'n_sersic': 7., 'center_x': 10, 'center_y': 10}) elif fix_n is not None: fixed_source.append({'n_sersic': fix_n}) kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': fix_n, 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.}) kwargs_source_sigma.append({'n_sersic': 0.001, 'R_sersic': 0.5, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}) kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.1, 'n_sersic': fix_n, 'center_x': -10, 'center_y': -10}) kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3, 'n_sersic': fix_n, 'center_x': 10, 'center_y': 10}) source_params = [kwargs_source_init, kwargs_source_sigma, fixed_source, kwargs_lower_source, kwargs_upper_source] else: source_params = source_params if ps_param is None: center_x = 0.0 center_y = 0.0 point_amp = QSO_im_list[0].sum()/2. fixed_ps = [{}] kwargs_ps = [{'ra_image': [center_x], 'dec_image': [center_y], 'point_amp': [point_amp]}] kwargs_ps_init = kwargs_ps kwargs_ps_sigma = [{'ra_image': [0.01], 'dec_image': [0.01]}] kwargs_lower_ps = [{'ra_image': [-10], 'dec_image': [-10]}] kwargs_upper_ps = [{'ra_image': [10], 'dec_image': [10]}] ps_param = [kwargs_ps_init, kwargs_ps_sigma, fixed_ps, kwargs_lower_ps, kwargs_upper_ps] else: ps_param = ps_param kwargs_params = {'source_model': source_params, 'point_source_model': ps_param} #============================================================================== #Doing the QSO fitting #============================================================================== kwargs_data_list, data_class_list = [], [] for i in range(len(QSO_im_list)): kwargs_data_i = sim_util.data_configure_simple(numPix, deltaPix, exp_time, background_rms_list[i], inverse=True) kwargs_data_list.append(kwargs_data_i) data_class_list.append(ImageData(**kwargs_data_i)) kwargs_psf_list = [] psf_class_list = [] for i in range(len(QSO_im_list)): kwargs_psf_i = {'psf_type': psf_type, 'kernel_point_source': kernel_list[i]} kwargs_psf_list.append(kwargs_psf_i) psf_class_list.append(PSF(**kwargs_psf_i)) data_class_list[i].update_data(QSO_im_list[i]) light_model_list = ['SERSIC_ELLIPSE'] * len(source_params[0]) lightModel = LightModel(light_model_list=light_model_list) point_source_list = ['UNLENSED'] pointSource = PointSource(point_source_type_list=point_source_list) imageModel_list = [] for i in range(len(QSO_im_list)): kwargs_data_list[i]['image_data'] = QSO_im_list[i] # if QSO_msk_list is not None: # kwargs_numerics_list[i]['mask'] = QSO_msk_list[i] if QSO_std_list is not None: kwargs_data_list[i]['noise_map'] = QSO_std_list[i] # if psf_std_list is not None: # kwargs_psf_list[i]['psf_error_map'] = psf_std_list[i] image_band_list = [] for i in range(len(QSO_im_list)): imageModel_list.append(ImageModel(data_class_list[i], psf_class_list[i], source_model_class=lightModel, point_source_class=pointSource, kwargs_numerics=kwargs_numerics_list[i])) image_band_list.append([kwargs_data_list[i], kwargs_psf_list[i], kwargs_numerics_list[i]]) multi_band_list = [image_band_list[i] for i in range(len(QSO_im_list))] # numerical options and fitting sequences kwargs_model = { 'source_light_model_list': light_model_list, 'point_source_model_list': point_source_list } if fixcenter == False: kwargs_constraints = {'num_point_source_list': [1] } elif fixcenter == True: kwargs_constraints = {'joint_source_with_point_source': [[0, 0]], 'num_point_source_list': [1] } kwargs_likelihood = {'check_bounds': True, #Set the bonds, if exceed, reutrn "penalty" 'source_marg': False, #In likelihood_module.LikelihoodModule -- whether to fully invert the covariance matrix for marginalization 'check_positive_flux': True, 'image_likelihood_mask_list': [QSO_msk_list] } # mpi = False # MPI possible, but not supported through that notebook. # The Params for the fitting. kwargs_init: initial input. kwargs_sigma: The parameter uncertainty. kwargs_fixed: fixed parameters; #kwargs_lower,kwargs_upper: Lower and upper limits. kwargs_data_joint = {'multi_band_list': multi_band_list, 'multi_band_type': 'multi-linear'} # 'single-band', 'multi-linear', 'joint-linear' fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params) if deep_seed == False: fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 80, 'n_iterations': 60, 'compute_bands': [True]+[False]*(len(QSO_im_list)-1)}], ['align_images', {'n_particles': 10, 'n_iterations': 10, 'compute_bands': [False]+[True]*(len(QSO_im_list)-1)}], ['PSO', {'sigma_scale': 0.8, 'n_particles': 100, 'n_iterations': 200, 'compute_bands': [True]*len(QSO_im_list)}], ['MCMC', {'n_burn': 10, 'n_run': 20, 'walkerRatio': 50, 'sigma_scale': .1}] ] elif deep_seed == True: fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 150, 'n_iterations': 60, 'compute_bands': [True]+[False]*(len(QSO_im_list)-1)}], ['align_images', {'n_particles': 20, 'n_iterations': 20, 'compute_bands': [False]+[True]*(len(QSO_im_list)-1)}], ['PSO', {'sigma_scale': 0.8, 'n_particles': 150, 'n_iterations': 200, 'compute_bands': [True]*len(QSO_im_list)}], ['MCMC', {'n_burn': 20, 'n_run': 40, 'walkerRatio': 50, 'sigma_scale': .1}] ] if no_MCMC == True: del fitting_kwargs_list[-1] start_time = time.time() # lens_result, source_result, lens_light_result, ps_result, cosmo_temp, chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fitting_seq.fit_sequence(fitting_kwargs_list) chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fitting_seq.fit_sequence(fitting_kwargs_list) lens_result, source_result, lens_light_result, ps_result, cosmo_temp = fitting_seq.best_fit() end_time = time.time() print(end_time - start_time, 'total time needed for computation') print('============ CONGRATULATION, YOUR JOB WAS SUCCESSFUL ================ ') source_result_list, ps_result_list = [], [] image_reconstructed_list, error_map_list, image_ps_list, image_host_list, shift_RADEC_list=[], [], [], [],[] imageLinearFit_list = [] for k in range(len(QSO_im_list)): # this is the linear inversion. The kwargs will be updated afterwards imageLinearFit_k = ImageLinearFit(data_class_list[k], psf_class_list[k], source_model_class=lightModel, point_source_class=pointSource, kwargs_numerics=kwargs_numerics_list[k]) image_reconstructed_k, error_map_k, _, _ = imageLinearFit_k.image_linear_solve(kwargs_source=source_result, kwargs_ps=ps_result) imageLinearFit_list.append(imageLinearFit_k) [kwargs_data_k, kwargs_psf_k, kwargs_numerics_k] = fitting_seq.multi_band_list[k] # data_class_k = data_class_list[k] #ImageData(**kwargs_data_k) # psf_class_k = psf_class_list[k] #PSF(**kwargs_psf_k) # imageModel_k = ImageModel(data_class_k, psf_class_k, source_model_class=lightModel, # point_source_class=pointSource, kwargs_numerics=kwargs_numerics_list[k]) imageModel_k = imageModel_list[k] modelPlot = ModelPlot(multi_band_list[k], kwargs_model, lens_result, source_result, lens_light_result, ps_result, arrow_size=0.02, cmap_string="gist_heat", likelihood_mask=QSO_im_list[k]) print("source_result", 'for', "k", source_result) image_host_k = [] for i in range(len(source_result)): image_host_k.append(imageModel_list[k].source_surface_brightness(source_result,de_lensed=True,unconvolved=False, k=i)) image_ps_k = imageModel_k.point_source(ps_result) # let's plot the output of the PSO minimizer image_reconstructed_list.append(image_reconstructed_k) source_result_list.append(source_result) ps_result_list.append(ps_result) error_map_list.append(error_map_k) image_ps_list.append(image_ps_k) image_host_list.append(image_host_k) if 'ra_shift' in fitting_seq.multi_band_list[k][0].keys(): shift_RADEC_list.append([fitting_seq.multi_band_list[k][0]['ra_shift'], fitting_seq.multi_band_list[k][0]['dec_shift']]) else: shift_RADEC_list.append([0,0]) if image_plot: f, axes = plt.subplots(3, 3, figsize=(16, 16), sharex=False, sharey=False) modelPlot.data_plot(ax=axes[0,0], text="Data") modelPlot.model_plot(ax=axes[0,1]) modelPlot.normalized_residual_plot(ax=axes[0,2], v_min=-6, v_max=6) modelPlot.decomposition_plot(ax=axes[1,0], text='Host galaxy', source_add=True, unconvolved=True) modelPlot.decomposition_plot(ax=axes[1,1], text='Host galaxy convolved', source_add=True) modelPlot.decomposition_plot(ax=axes[1,2], text='All components convolved', source_add=True, lens_light_add=True, point_source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2,0], text='Data - Point Source', point_source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2,1], text='Data - host galaxy', source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2,2], text='Data - host galaxy - Point Source', source_add=True, point_source_add=True) f.tight_layout() if tag is not None: f.savefig('{0}_fitted_image_band{1}.pdf'.format(tag,new_band_seq[k])) if pltshow == 0: plt.close() else: plt.show() if corner_plot==True and no_MCMC==False and k ==0: # here the (non-converged) MCMC chain of the non-linear parameters if not samples_mcmc == []: n, num_param = np.shape(samples_mcmc) plot = corner.corner(samples_mcmc, labels=param_mcmc, show_titles=True) if tag is not None: plot.savefig('{0}_para_corner.pdf'.format(tag)) if pltshow == 0: plt.close() else: plt.show() if flux_ratio_plot==True and no_MCMC==False: param = Param(kwargs_model, kwargs_fixed_source=source_params[2], kwargs_fixed_ps=fixed_ps, **kwargs_constraints) mcmc_new_list = [] labels_new = [r"Quasar flux", r"host_flux", r"source_x", r"source_y"] # transform the parameter position of the MCMC chain in a lenstronomy convention with keyword arguments # for i in range(len(samples_mcmc)/10): kwargs_lens_out, kwargs_light_source_out, kwargs_light_lens_out, kwargs_ps_out, kwargs_cosmo = param.getParams(samples_mcmc[i+ len(samples_mcmc)/10*9]) image_reconstructed, _, _, _ = imageLinearFit_list[k].image_linear_solve(kwargs_source=kwargs_light_source_out, kwargs_ps=kwargs_ps_out) image_ps = imageModel_list[k].point_source(kwargs_ps_out) flux_quasar = np.sum(image_ps) image_disk = imageModel_list[k].source_surface_brightness(kwargs_light_source_out,de_lensed=True,unconvolved=False, k=0) flux_disk = np.sum(image_disk) source_x = kwargs_ps_out[0]['ra_image'] source_y = kwargs_ps_out[0]['dec_image'] if flux_disk>0: mcmc_new_list.append([flux_quasar, flux_disk, source_x, source_y]) plot = corner.corner(mcmc_new_list, labels=labels_new, show_titles=True) if tag is not None: plot.savefig('{0}_HOSTvsQSO_corner_band{1}.pdf'.format(tag,new_band_seq[k])) if pltshow == 0: plt.close() else: plt.show() errp_list = [] for k in range(len(QSO_im_list)): if QSO_std_list is None: errp_list.append(np.sqrt(data_class_list[k].C_D+np.abs(error_map_list[k]))) else: errp_list.append(np.sqrt(QSO_std_list[k]**2+np.abs(error_map_list[k]))) return source_result_list, ps_result_list, image_ps_list, image_host_list, errp_list, shift_RADEC_list, fitting_seq #fitting_seq.multi_band_list
def fit_qso(QSO_im, psf_ave, psf_std=None, source_params=None,ps_param=None, background_rms=0.04, pix_sz = 0.168, exp_time = 300., fix_n=None, image_plot = True, corner_plot=True, supersampling_factor = 2, flux_ratio_plot=False, deep_seed = False, fixcenter = False, QSO_msk=None, QSO_std=None, tag = None, no_MCMC= False, pltshow = 1, return_Chisq = False, dump_result = False, pso_diag=False): ''' A quick fit for the QSO image with (so far) single sersice + one PSF. The input psf noise is optional. Parameter -------- QSO_im: An array of the QSO image. psf_ave: The psf image. psf_std: The psf noise, optional. source_params: The prior for the source. Default is given. If [], means no Sersic light. background_rms: default as 0.04 exp_time: default at 2400. deep_seed: if Ture, more mcmc steps will be performed. tag: The name tag for save the plot Return -------- Will output the fitted image (Set image_plot = True), the corner_plot and the flux_ratio_plot. source_result, ps_result, image_ps, image_host To do -------- ''' # data specifics need to set up based on the data situation background_rms = background_rms # background noise per pixel (Gaussian) exp_time = exp_time # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit) numPix = len(QSO_im) # cutout pixel size deltaPix = pix_sz psf_type = 'PIXEL' # 'gaussian', 'pixel', 'NONE' kernel = psf_ave kwargs_numerics = {'supersampling_factor': supersampling_factor, 'supersampling_convolution': False} if source_params is None: # here are the options for the host galaxy fitting fixed_source = [] kwargs_source_init = [] kwargs_source_sigma = [] kwargs_lower_source = [] kwargs_upper_source = [] if fix_n == None: fixed_source.append({}) # we fix the Sersic index to n=1 (exponential) kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': 2., 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.}) kwargs_source_sigma.append({'n_sersic': 0.5, 'R_sersic': 0.5, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}) kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.1, 'n_sersic': 0.3, 'center_x': -10, 'center_y': -10}) kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3., 'n_sersic': 7., 'center_x': 10, 'center_y': 10}) elif fix_n is not None: fixed_source.append({'n_sersic': fix_n}) kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': fix_n, 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.}) kwargs_source_sigma.append({'n_sersic': 0.001, 'R_sersic': 0.5, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}) kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.1, 'n_sersic': fix_n, 'center_x': -10, 'center_y': -10}) kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3, 'n_sersic': fix_n, 'center_x': 10, 'center_y': 10}) source_params = [kwargs_source_init, kwargs_source_sigma, fixed_source, kwargs_lower_source, kwargs_upper_source] else: source_params = source_params if ps_param is None: center_x = 0.0 center_y = 0.0 point_amp = QSO_im.sum()/2. fixed_ps = [{}] kwargs_ps = [{'ra_image': [center_x], 'dec_image': [center_y], 'point_amp': [point_amp]}] kwargs_ps_init = kwargs_ps kwargs_ps_sigma = [{'ra_image': [0.05], 'dec_image': [0.05]}] kwargs_lower_ps = [{'ra_image': [-0.6], 'dec_image': [-0.6]}] kwargs_upper_ps = [{'ra_image': [0.6], 'dec_image': [0.6]}] ps_param = [kwargs_ps_init, kwargs_ps_sigma, fixed_ps, kwargs_lower_ps, kwargs_upper_ps] else: ps_param = ps_param #============================================================================== #Doing the QSO fitting #============================================================================== kwargs_data = sim_util.data_configure_simple(numPix, deltaPix, exp_time, background_rms, inverse=True) data_class = ImageData(**kwargs_data) kwargs_psf = {'psf_type': psf_type, 'kernel_point_source': kernel} psf_class = PSF(**kwargs_psf) data_class.update_data(QSO_im) point_source_list = ['UNLENSED'] * len(ps_param[0]) pointSource = PointSource(point_source_type_list=point_source_list) if fixcenter == False: kwargs_constraints = {'num_point_source_list': [1] * len(ps_param[0]) } elif fixcenter == True: kwargs_constraints = {'joint_source_with_point_source': [[i, i] for i in range(len(ps_param[0]))], 'num_point_source_list': [1] * len(ps_param[0]) } if source_params == []: #fitting image as Point source only. kwargs_params = {'point_source_model': ps_param} lightModel = None kwargs_model = {'point_source_model_list': point_source_list } imageModel = ImageModel(data_class, psf_class, point_source_class=pointSource, kwargs_numerics=kwargs_numerics) kwargs_likelihood = {'check_bounds': True, #Set the bonds, if exceed, reutrn "penalty" 'image_likelihood_mask_list': [QSO_msk] } elif source_params != []: kwargs_params = {'source_model': source_params, 'point_source_model': ps_param} light_model_list = ['SERSIC_ELLIPSE'] * len(source_params[0]) lightModel = LightModel(light_model_list=light_model_list) kwargs_model = { 'source_light_model_list': light_model_list, 'point_source_model_list': point_source_list } imageModel = ImageModel(data_class, psf_class, source_model_class=lightModel, point_source_class=pointSource, kwargs_numerics=kwargs_numerics) # numerical options and fitting sequences kwargs_likelihood = {'check_bounds': True, #Set the bonds, if exceed, reutrn "penalty" 'source_marg': False, #In likelihood_module.LikelihoodModule -- whether to fully invert the covariance matrix for marginalization 'check_positive_flux': True, 'image_likelihood_mask_list': [QSO_msk] } kwargs_data['image_data'] = QSO_im if QSO_std is not None: kwargs_data['noise_map'] = QSO_std if psf_std is not None: kwargs_psf['psf_error_map'] = psf_std image_band = [kwargs_data, kwargs_psf, kwargs_numerics] multi_band_list = [image_band] kwargs_data_joint = {'multi_band_list': multi_band_list, 'multi_band_type': 'multi-linear'} # 'single-band', 'multi-linear', 'joint-linear' fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params) if deep_seed == False: fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 100, 'n_iterations': 60}], ['MCMC', {'n_burn': 10, 'n_run': 10, 'walkerRatio': 50, 'sigma_scale': .1}] ] elif deep_seed == True: fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 250, 'n_iterations': 250}], ['MCMC', {'n_burn': 100, 'n_run': 200, 'walkerRatio': 10, 'sigma_scale': .1}] ] if no_MCMC == True: fitting_kwargs_list = [fitting_kwargs_list[0], ] start_time = time.time() chain_list = fitting_seq.fit_sequence(fitting_kwargs_list) kwargs_result = fitting_seq.best_fit() ps_result = kwargs_result['kwargs_ps'] source_result = kwargs_result['kwargs_source'] if no_MCMC == False: sampler_type, samples_mcmc, param_mcmc, dist_mcmc = chain_list[1] end_time = time.time() print(end_time - start_time, 'total time needed for computation') print('============ CONGRATULATION, YOUR JOB WAS SUCCESSFUL ================ ') imageLinearFit = ImageLinearFit(data_class=data_class, psf_class=psf_class, source_model_class=lightModel, point_source_class=pointSource, kwargs_numerics=kwargs_numerics) image_reconstructed, error_map, _, _ = imageLinearFit.image_linear_solve(kwargs_source=source_result, kwargs_ps=ps_result) # this is the linear inversion. The kwargs will be updated afterwards modelPlot = ModelPlot(multi_band_list, kwargs_model, kwargs_result, arrow_size=0.02, cmap_string="gist_heat", likelihood_mask_list=[QSO_msk]) image_host = [] #!!! The linear_solver before and after LensModelPlot could have different result for very faint sources. for i in range(len(source_result)): image_host.append(imageModel.source_surface_brightness(source_result, de_lensed=True,unconvolved=False,k=i)) image_ps = [] for i in range(len(ps_result)): image_ps.append(imageModel.point_source(ps_result, k = i)) if pso_diag == True: f, axes = chain_plot.plot_chain_list(chain_list,0) if pltshow == 0: plt.close() else: plt.show() # let's plot the output of the PSO minimizer reduced_Chisq = imageLinearFit.reduced_chi2(image_reconstructed, error_map) if image_plot: f, axes = plt.subplots(3, 3, figsize=(16, 16), sharex=False, sharey=False) modelPlot.data_plot(ax=axes[0,0], text="Data") modelPlot.model_plot(ax=axes[0,1]) modelPlot.normalized_residual_plot(ax=axes[0,2], v_min=-6, v_max=6) modelPlot.decomposition_plot(ax=axes[1,0], text='Host galaxy', source_add=True, unconvolved=True) modelPlot.decomposition_plot(ax=axes[1,1], text='Host galaxy convolved', source_add=True) modelPlot.decomposition_plot(ax=axes[1,2], text='All components convolved', source_add=True, lens_light_add=True, point_source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2,0], text='Data - Point Source', point_source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2,1], text='Data - host galaxy', source_add=True) modelPlot.subtract_from_data_plot(ax=axes[2,2], text='Data - host galaxy - Point Source', source_add=True, point_source_add=True) f.tight_layout() #f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0., hspace=0.05) if tag is not None: f.savefig('{0}_fitted_image.pdf'.format(tag)) if pltshow == 0: plt.close() else: plt.show() if corner_plot==True and no_MCMC==False: # here the (non-converged) MCMC chain of the non-linear parameters if not samples_mcmc == []: n, num_param = np.shape(samples_mcmc) plot = corner.corner(samples_mcmc, labels=param_mcmc, show_titles=True) if tag is not None: plot.savefig('{0}_para_corner.pdf'.format(tag)) plt.close() # if pltshow == 0: # plt.close() # else: # plt.show() if flux_ratio_plot==True and no_MCMC==False: param = Param(kwargs_model, kwargs_fixed_source=source_params[2], kwargs_fixed_ps=ps_param[2], **kwargs_constraints) mcmc_new_list = [] if len(ps_param[2]) == 1: labels_new = ["Quasar flux"] + ["host{0} flux".format(i) for i in range(len(source_params[0]))] else: labels_new = ["Quasar{0} flux".format(i) for i in range(len(ps_param[2]))] + ["host{0} flux".format(i) for i in range(len(source_params[0]))] if len(samples_mcmc) > 10000: trans_steps = [len(samples_mcmc)-10000, len(samples_mcmc)] else: trans_steps = [0, len(samples_mcmc)] for i in range(trans_steps[0], trans_steps[1]): kwargs_out = param.args2kwargs(samples_mcmc[i]) kwargs_light_source_out = kwargs_out['kwargs_source'] kwargs_ps_out = kwargs_out['kwargs_ps'] image_reconstructed, _, _, _ = imageLinearFit.image_linear_solve(kwargs_source=kwargs_light_source_out, kwargs_ps=kwargs_ps_out) flux_quasar = [] if len(ps_param[0]) == 1: image_ps_j = imageModel.point_source(kwargs_ps_out) flux_quasar.append(np.sum(image_ps_j)) else: for j in range(len(ps_param[0])): image_ps_j = imageModel.point_source(kwargs_ps_out, k=j) flux_quasar.append(np.sum(image_ps_j)) fluxs = [] for j in range(len(source_params[0])): image_j = imageModel.source_surface_brightness(kwargs_light_source_out,unconvolved= False, k=j) fluxs.append(np.sum(image_j)) mcmc_new_list.append(flux_quasar + fluxs ) if int(i/1000) > int((i-1)/1000) : print(len(samples_mcmc), "MCMC samplers in total, finished translate:", i ) plot = corner.corner(mcmc_new_list, labels=labels_new, show_titles=True) if tag is not None: plot.savefig('{0}_HOSTvsQSO_corner.pdf'.format(tag)) if pltshow == 0: plt.close() else: plt.show() if QSO_std is None: noise_map = np.sqrt(data_class.C_D+np.abs(error_map)) else: noise_map = np.sqrt(QSO_std**2+np.abs(error_map)) if dump_result == True: if flux_ratio_plot==True and no_MCMC==False: trans_paras = [mcmc_new_list, labels_new, 'mcmc_new_list, labels_new'] else: trans_paras = [] picklename= tag + '.pkl' best_fit = [source_result, image_host, ps_result, image_ps,'source_result, image_host, ps_result, image_ps'] chain_list_result = [chain_list, 'chain_list'] kwargs_fixed_source=source_params[2] kwargs_fixed_ps=ps_param[2] classes = data_class, psf_class, lightModel, pointSource material = multi_band_list, kwargs_model, kwargs_result, QSO_msk, kwargs_fixed_source, kwargs_fixed_ps, kwargs_constraints, kwargs_numerics, classes pickle.dump([best_fit, chain_list_result, trans_paras, material], open(picklename, 'wb')) if return_Chisq == False: return source_result, ps_result, image_ps, image_host, noise_map elif return_Chisq == True: return source_result, ps_result, image_ps, image_host, noise_map, reduced_Chisq
def fit_galaxy(galaxy_im, psf_ave, psf_std=None, source_params=None, background_rms=0.04, pix_sz = 0.08, exp_time = 300., fix_n=None, image_plot = True, corner_plot=True, deep_seed = False, galaxy_msk=None, galaxy_std=None, flux_corner_plot = False, tag = None, no_MCMC= False, pltshow = 1, return_Chisq = False, dump_result = False, pso_diag=False): ''' A quick fit for the QSO image with (so far) single sersice + one PSF. The input psf noise is optional. Parameter -------- galaxy_im: An array of the QSO image. psf_ave: The psf image. psf_std: The psf noise, optional. source_params: The prior for the source. Default is given. background_rms: default as 0.04 exp_time: default at 2400. deep_seed: if Ture, more mcmc steps will be performed. tag: The name tag for save the plot Return -------- Will output the fitted image (Set image_plot = True), the corner_plot and the flux_ratio_plot. source_result, ps_result, image_ps, image_host To do -------- ''' # data specifics need to set up based on the data situation background_rms = background_rms # background noise per pixel (Gaussian) exp_time = exp_time # exposure time (arbitrary units, flux per pixel is in units #photons/exp_time unit) numPix = len(galaxy_im) # cutout pixel size deltaPix = pix_sz if psf_ave is not None: psf_type = 'PIXEL' # 'gaussian', 'pixel', 'NONE' kernel = psf_ave # if psf_std is not None: # kwargs_numerics = {'subgrid_res': 1, 'psf_error_map': True} #Turn on the PSF error map # else: kwargs_numerics = {'supersampling_factor': 1, 'supersampling_convolution': False} if source_params is None: # here are the options for the host galaxy fitting fixed_source = [] kwargs_source_init = [] kwargs_source_sigma = [] kwargs_lower_source = [] kwargs_upper_source = [] # Disk component, as modelled by an elliptical Sersic profile if fix_n == None: fixed_source.append({}) # we fix the Sersic index to n=1 (exponential) kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': 2., 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.}) kwargs_source_sigma.append({'n_sersic': 0.5, 'R_sersic': 0.1, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}) kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.01, 'n_sersic': 0.3, 'center_x': -10, 'center_y': -10}) kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3., 'n_sersic': 7., 'center_x': 10, 'center_y': 10}) elif fix_n is not None: fixed_source.append({'n_sersic': fix_n}) kwargs_source_init.append({'R_sersic': 0.3, 'n_sersic': fix_n, 'e1': 0., 'e2': 0., 'center_x': 0., 'center_y': 0.}) kwargs_source_sigma.append({'n_sersic': 0.001, 'R_sersic': 0.1, 'e1': 0.1, 'e2': 0.1, 'center_x': 0.1, 'center_y': 0.1}) kwargs_lower_source.append({'e1': -0.5, 'e2': -0.5, 'R_sersic': 0.01, 'n_sersic': fix_n, 'center_x': -10, 'center_y': -10}) kwargs_upper_source.append({'e1': 0.5, 'e2': 0.5, 'R_sersic': 3, 'n_sersic': fix_n, 'center_x': 10, 'center_y': 10}) source_params = [kwargs_source_init, kwargs_source_sigma, fixed_source, kwargs_lower_source, kwargs_upper_source] else: source_params = source_params kwargs_params = {'source_model': source_params} #============================================================================== #Doing the QSO fitting #============================================================================== kwargs_data = sim_util.data_configure_simple(numPix, deltaPix, exp_time, background_rms, inverse=True) data_class = ImageData(**kwargs_data) if psf_ave is not None: kwargs_psf = {'psf_type': psf_type, 'kernel_point_source': kernel} else: kwargs_psf = {'psf_type': 'NONE'} psf_class = PSF(**kwargs_psf) data_class.update_data(galaxy_im) light_model_list = ['SERSIC_ELLIPSE'] * len(source_params[0]) lightModel = LightModel(light_model_list=light_model_list) kwargs_model = { 'source_light_model_list': light_model_list} # numerical options and fitting sequences kwargs_constraints = {} kwargs_likelihood = {'check_bounds': True, #Set the bonds, if exceed, reutrn "penalty" 'source_marg': False, #In likelihood_module.LikelihoodModule -- whether to fully invert the covariance matrix for marginalization 'check_positive_flux': True, 'image_likelihood_mask_list': [galaxy_msk] } kwargs_data['image_data'] = galaxy_im if galaxy_std is not None: kwargs_data['noise_map'] = galaxy_std if psf_std is not None: kwargs_psf['psf_error_map'] = psf_std image_band = [kwargs_data, kwargs_psf, kwargs_numerics] multi_band_list = [image_band] kwargs_data_joint = {'multi_band_list': multi_band_list, 'multi_band_type': 'multi-linear'} # 'single-band', 'multi-linear', 'joint-linear' fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params) if deep_seed == False: fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 50, 'n_iterations': 50}], ['MCMC', {'n_burn': 10, 'n_run': 10, 'walkerRatio': 50, 'sigma_scale': .1}] ] elif deep_seed == True: fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 100, 'n_iterations': 80}], ['MCMC', {'n_burn': 10, 'n_run': 15, 'walkerRatio': 50, 'sigma_scale': .1}] ] elif deep_seed == 'very_deep': fitting_kwargs_list = [ ['PSO', {'sigma_scale': 0.8, 'n_particles': 150, 'n_iterations': 150}], ['MCMC', {'n_burn': 10, 'n_run': 20, 'walkerRatio': 50, 'sigma_scale': .1}] ] if no_MCMC == True: fitting_kwargs_list = [fitting_kwargs_list[0], ] start_time = time.time() chain_list = fitting_seq.fit_sequence(fitting_kwargs_list) kwargs_result = fitting_seq.best_fit() ps_result = kwargs_result['kwargs_ps'] source_result = kwargs_result['kwargs_source'] if no_MCMC == False: sampler_type, samples_mcmc, param_mcmc, dist_mcmc = chain_list[1] # chain_list, param_list, samples_mcmc, param_mcmc, dist_mcmc = fitting_seq.fit_sequence(fitting_kwargs_list) # lens_result, source_result, lens_light_result, ps_result, cosmo_temp = fitting_seq.best_fit() end_time = time.time() print(end_time - start_time, 'total time needed for computation') print('============ CONGRATULATION, YOUR JOB WAS SUCCESSFUL ================ ') # this is the linear inversion. The kwargs will be updated afterwards imageModel = ImageModel(data_class, psf_class, source_model_class=lightModel,kwargs_numerics=kwargs_numerics) imageLinearFit = ImageLinearFit(data_class=data_class, psf_class=psf_class, source_model_class=lightModel, kwargs_numerics=kwargs_numerics) image_reconstructed, error_map, _, _ = imageLinearFit.image_linear_solve(kwargs_source=source_result, kwargs_ps=ps_result) # image_host = [] #!!! The linear_solver before and after could have different result for very faint sources. # for i in range(len(source_result)): # image_host_i = imageModel.source_surface_brightness(source_result,de_lensed=True,unconvolved=False, k=i) # print("image_host_i", source_result[i]) # print("total flux", image_host_i.sum()) # image_host.append(image_host_i) # let's plot the output of the PSO minimizer modelPlot = ModelPlot(multi_band_list, kwargs_model, kwargs_result, arrow_size=0.02, cmap_string="gist_heat", likelihood_mask_list=[galaxy_msk]) if pso_diag == True: f, axes = chain_plot.plot_chain_list(chain_list,0) if pltshow == 0: plt.close() else: plt.show() reduced_Chisq = imageLinearFit.reduced_chi2(image_reconstructed, error_map) if image_plot: f, axes = plt.subplots(1, 3, figsize=(16, 16), sharex=False, sharey=False) modelPlot.data_plot(ax=axes[0]) modelPlot.model_plot(ax=axes[1]) modelPlot.normalized_residual_plot(ax=axes[2], v_min=-6, v_max=6) f.tight_layout() #f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0., hspace=0.05) if tag is not None: f.savefig('{0}_fitted_image.pdf'.format(tag)) if pltshow == 0: plt.close() else: plt.show() image_host = [] for i in range(len(source_result)): image_host_i = imageModel.source_surface_brightness(source_result,de_lensed=True,unconvolved=False, k=i) # print("image_host_i", source_result[i]) # print("total flux", image_host_i.sum()) image_host.append(image_host_i) if corner_plot==True and no_MCMC==False: # here the (non-converged) MCMC chain of the non-linear parameters if not samples_mcmc == []: n, num_param = np.shape(samples_mcmc) plot = corner.corner(samples_mcmc, labels=param_mcmc, show_titles=True) if tag is not None: plot.savefig('{0}_para_corner.pdf'.format(tag)) if pltshow == 0: plt.close() else: plt.show() if flux_corner_plot ==True and no_MCMC==False: param = Param(kwargs_model, kwargs_fixed_source=source_params[2], **kwargs_constraints) mcmc_new_list = [] labels_new = ["host{0} flux".format(i) for i in range(len(source_params[0]))] for i in range(len(samples_mcmc)): kwargs_out = param.args2kwargs(samples_mcmc[i]) kwargs_light_source_out = kwargs_out['kwargs_source'] kwargs_ps_out = kwargs_out['kwargs_ps'] image_reconstructed, _, _, _ = imageLinearFit.image_linear_solve(kwargs_source=kwargs_light_source_out, kwargs_ps=kwargs_ps_out) fluxs = [] for j in range(len(source_params[0])): image_j = imageModel.source_surface_brightness(kwargs_light_source_out,unconvolved= False, k=j) fluxs.append(np.sum(image_j)) mcmc_new_list.append( fluxs ) if int(i/1000) > int((i-1)/1000) : print(len(samples_mcmc), "MCMC samplers in total, finished translate:", i ) plot = corner.corner(mcmc_new_list, labels=labels_new, show_titles=True) if tag is not None: plot.savefig('{0}_HOSTvsQSO_corner.pdf'.format(tag)) if pltshow == 0: plt.close() else: plt.show() if galaxy_std is None: noise_map = np.sqrt(data_class.C_D+np.abs(error_map)) else: noise_map = np.sqrt(galaxy_std**2+np.abs(error_map)) if dump_result == True: if flux_corner_plot==True and no_MCMC==False: trans_paras = [source_params[2], mcmc_new_list, labels_new, 'source_params[2], mcmc_new_list, labels_new'] else: trans_paras = [] picklename= tag + '.pkl' best_fit = [source_result, image_host, 'source_result, image_host'] # pso_fit = [chain_list, param_list, 'chain_list, param_list'] # mcmc_fit = [samples_mcmc, param_mcmc, dist_mcmc, 'samples_mcmc, param_mcmc, dist_mcmc'] chain_list_result = [chain_list, 'chain_list'] pickle.dump([best_fit, chain_list_result, trans_paras], open(picklename, 'wb')) if return_Chisq == False: return source_result, image_host, noise_map elif return_Chisq == True: return source_result, image_host, noise_map, reduced_Chisq