uh = Function(V)
uh.assign(u_expr)

# Total velocity
uadvect = uh - umesh

# Now throw in the particles
x = RandomRectangle(Point(xmin, ymin), Point(xmax, ymax)).generate([pres, pres])
s = assign_particle_values(x, CosineHill(radius=0.25, center=[0.25, 0.5],
                                         amplitude=1.0, degree=1))
p = particles(x, [s], mesh)

# Define projections problem
FuncSpace_adv = {'FuncSpace_local': Q_Rho, 'FuncSpace_lambda': T_1, 'FuncSpace_bar': Qbar}
FormsPDE = FormsPDEMap(mesh, FuncSpace_adv, beta_map=Constant(1e-8))
forms_pde = FormsPDE.forms_theta_linear(phih0, uadvect, dt, Constant(1.0), zeta=Constant(0.),
                                        h=Constant(0.))
pde_projection = PDEStaticCondensation(mesh, p,
                                       forms_pde['N_a'], forms_pde['G_a'], forms_pde['L_a'],
                                       forms_pde['H_a'],
                                       forms_pde['B_a'],
                                       forms_pde['Q_a'], forms_pde['R_a'], forms_pde['S_a'],
                                       [], 1)

ap = advect_rk3(p, V, uh, 'open')

# Initialize the initial condition at mesh by an l2 projection
lstsq_rho = l2projection(p, Q_Rho, 1)
lstsq_rho.project(phih0)
outfile << phih0

for step in range(num_steps):
示例#2
0
def test_moving_mesh():
    t = 0.
    dt = 0.025
    num_steps = 20
    xmin, ymin = 0., 0.
    xmax, ymax = 2., 2.
    xc, yc = 1., 1.
    nx, ny = 20, 20
    pres = 150
    k = 1

    mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), nx, ny)
    n = FacetNormal(mesh)

    # Class for mesh motion
    dU = PeriodicVelocity(xmin, xmax, dt, t, degree=1)

    Qcg = VectorFunctionSpace(mesh, 'CG', 1)

    boundaries = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
    boundaries.set_all(0)
    leftbound = Left(xmin)

    leftbound.mark(boundaries, 99)
    ds = Measure('ds', domain=mesh, subdomain_data=boundaries)

    # Create function spaces
    Q_E_Rho = FiniteElement("DG", mesh.ufl_cell(), k)
    T_1 = FunctionSpace(mesh, 'DG', 0)
    Qbar_E = FiniteElement("DGT", mesh.ufl_cell(), k)

    Q_Rho = FunctionSpace(mesh, Q_E_Rho)
    Qbar = FunctionSpace(mesh, Qbar_E)

    phih, phih0 = Function(Q_Rho), Function(Q_Rho)
    phibar = Function(Qbar)

    # Advective velocity
    uh = Function(Qcg)
    uh.assign(Constant((0., 0.)))
    # Mesh velocity
    umesh = Function(Qcg)
    # Total velocity
    uadvect = uh-umesh

    # Now throw in the particles
    x = RandomRectangle(Point(xmin, ymin), Point(xmax, ymax)).generate([pres, pres])
    s = assign_particle_values(x, GaussianPulse(center=(xc, yc), sigma=float(0.25),
                                                U=[0, 0], time=0., height=1., degree=3))
    x = comm.bcast(x, root=0)
    s = comm.bcast(s, root=0)
    p = particles(x, [s], mesh)

    # Define projections problem
    FuncSpace_adv = {'FuncSpace_local': Q_Rho, 'FuncSpace_lambda': T_1, 'FuncSpace_bar': Qbar}
    FormsPDE = FormsPDEMap(mesh, FuncSpace_adv, ds=ds)
    forms_pde = FormsPDE.forms_theta_linear(phih0, uadvect, dt, Constant(1.0), zeta=Constant(0.))
    pde_projection = PDEStaticCondensation(mesh, p,
                                           forms_pde['N_a'], forms_pde['G_a'], forms_pde['L_a'],
                                           forms_pde['H_a'],
                                           forms_pde['B_a'],
                                           forms_pde['Q_a'], forms_pde['R_a'], forms_pde['S_a'],
                                           [], 1)

    # Initialize the initial condition at mesh by an l2 projection
    lstsq_rho = l2projection(p, Q_Rho, 1)
    lstsq_rho.project(phih0.cpp_object())

    for step in range(num_steps):
        # Compute old area at old configuration
        old_area = assemble(phih0*dx)

        # Pre-assemble rhs
        pde_projection.assemble_state_rhs()

        # Move mesh
        dU.compute_ubc()
        umesh.assign(project(dU, Qcg))

        ALE.move(mesh, project(dU * dt, Qcg))
        dU.update()

        # Relocate particles as a result of mesh motion
        # NOTE: if particles were advected themselve,
        # we had to run update_facets_info() here as well
        p.relocate()

        # Assemble left-hand side on new config, but not the right-hand side
        pde_projection.assemble(True, False)
        pde_projection.solve_problem(phibar.cpp_object(), phih.cpp_object(),
                                     'mumps', 'none')

        # Needed to compute conservation, note that there
        # is an outgoing flux at left boundary
        new_area = assemble(phih*dx)
        gamma = conditional(ge(dot(uadvect, n), 0), 0, 1)
        bflux = assemble((1-gamma) * dot(uadvect, n) * phih * ds)

        # Update solution
        assign(phih0, phih)

        # Put assertion on (global) mass balance, local mass balance is
        # too time consuming but should pass also
        assert new_area - old_area + bflux * dt < 1e-12

        # Assert that max value of phih stays close to 2 and
        # min value close to 0. This typically will fail if
        # we do not do a correct relocate of particles
        assert np.amin(phih.vector().get_local()) > -0.015
        assert np.amax(phih.vector().get_local()) < 1.04