def generate_penrose_rhombic_lattice(shape, NH, NV, check=False): """Make lattice from rhombic penrose tiling Parameters ---------- shape : str NH : int NV : int check : bool Returns ---------- xy, NL, KL, BL, TRI, lattice_exten """ if NH < 160 and NV < 160: Num_sub = int(np.ceil(np.log2(NH) + 3)) else: Num_sub = int(np.ceil(np.log2(NH) + 4)) xy, NL, KL, BL, TRI, lattice_exten = generate_penrose_rhombic_tiling(Num_sub, check=check) xy, NL, KL, BL = blf.mask_with_polygon(shape, NH, NV, xy, BL, check=check) lattice_exten = lattice_exten.split('_div')[0] + '_'+shape+'_div'+lattice_exten.split('_div')[1] return xy, NL, KL, BL, lattice_exten, Num_sub
def build_accordionkag_isocent(lp): """Create an accordion-bonded kagomized amorphous network from a loaded jammed point set. Parameters ---------- lp Returns ------- """ shape = lp['shape'] check = lp['check'] NH = lp['NH'] NV = lp['NV'] print('Loading isostatic to build kagome-decorated lattice...') import lepm.build.build_jammed as build_jammed use_hexner = (lp['source'] == 'hexner') if use_hexner: # Use Daniel Hexner's lattices points, BL, LLv, numberstr, sizestr, lp = build_jammed.load_hexner_jammed( lp, BL_load=False) LL = (LLv, LLv) else: number = '{0:03d}'.format(int(lp['loadlattice_number'])) zindex = '{0:03d}'.format(int(lp['loadlattice_z'])) points = np.loadtxt(lp['rootdir'] + 'networks/' + 'isostatic_source/isostatic_homog_z' + zindex + '_conf' + number + '_nodes.txt') # LL = NH points -= np.mean(points, axis=0) # Separate procedure if not using entire lattice if lp['NP_load'] == 0: # Do initial (generous) cropping if not using entire lattice if check: plt.plot(points[:, 0], points[:, 1], 'b.') plt.title('Point set before initial cutting') plt.show() xytmp, trash1, trash2, trash3 = blf.mask_with_polygon(shape, NH * 1.2 + 8, NV * 1.2 + 8, points, [], eps=0.) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) if check: plt.plot(xytmp[:, 0], xytmp[:, 1], 'b.') plt.title('Point set after initial cutting') plt.show() xy, NL, KL, BL = le.delaunay_centroid_lattice_from_pts( xytmp, polygon=polygon, trimbound=False, check=lp['check']) ################################################################# # nzag controlled by lp['intparam'] below xyacc, BLacc, LVUC, UC, xyvertices, lattice_exten_add = \ blf.accordionize_network(xy, BL, lp, PVxydict=None, PVx=None, PVy=None, PV=None) print 'BL = ', BL # need indices of xy that correspond to xyvertices # note that xyvertices gives the positions of the vertices, not their indices inRx = np.in1d(xyacc[:, 0], xyvertices[:, 0]) inRy = np.in1d(xyacc[:, 1], xyvertices[:, 1]) vxind = np.where(np.logical_and(inRx, inRy))[0] print 'vxind = ', vxind # Note: beware, do not provide NL and KL to decorate_bondneighbors_elements() since NL,KL need # to be recalculated xy, BL = blf.decorate_bondneighbors_elements(xyacc, BLacc, vxind, PVxydict=None, viewmethod=False, check=lp['check']) NL, KL = le.BL2NLandKL(BL, NP=len(xy)) ################################################################# LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] periodicBCstr = '' else: polygon = 0.5 * np.array([[-LL[0], -LL[1]], [LL[0], -LL[1]], [LL[0], LL[1]], [-LL[0], LL[1]]]) xy, NL, KL, BL, PVxydict = blf.kagomecentroid_periodic_network_from_pts( points, LL, BBox='auto', check=lp['check']) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) periodicBCstr = '_periodic' # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale polygon *= scale LL = (LL[0] * scale, LL[1] * scale) if lp['periodicBC']: PVx *= scale PVy *= scale PVxydict.update((key, val * scale) for key, val in PVxydict.items()) lattice_exten = 'accordionkag_isocent_' + shape + periodicBCstr + '_d{0:02d}'.format(int(lp['conf'])) + \ lattice_exten_add if use_hexner: lattice_exten = 'accordionkag_isocent_' + shape + periodicBCstr + '_hexner_size' + sizestr + '_conf' + \ numberstr + lattice_exten_add else: lattice_exten = 'accordionkag_isocent_' + shape + periodicBCstr + '_ulrich_homog_zindex' + zindex + \ lattice_exten_add LV = 'none' LVUC = 'none' UC = 'none' BBox = polygon return xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten
def build_iscentroid(lp): """Build centroidal (honeycomb-like) network from isostatic point set generated by Daniel Hexner. """ NH = lp['NH'] NV = lp['NV'] # First check that if periodic, NP_load is defined as nonzero if lp['periodicBC']: if lp['NP_load'] == 0: RuntimeError( 'For iscentroid lattices, if periodicBC, then must specify NP_load instead of NH, NV.' ) use_hexner = (lp['source'] == 'hexner') if use_hexner: # Use Daniel Hexner's lattices points, BL, LLv, numberstr, sizestr, lp = build_jammed.load_hexner_jammed( lp, BL_load=False) LL = (LLv, LLv) else: # Use Stephan Ulrich's lattices if lp['periodicBC']: RuntimeError('Not sure if Stephan Ulrich lattices are periodic!') number = '{0:03d}'.format(int(lp['loadlattice_number'])) zindex = '{0:03d}'.format(int(lp['loadlattice_z'])) points = np.loadtxt(lp['rootdir'] + 'networks/' + 'isostatic_source/isostatic_homog_z' + zindex + '_conf' + number + '_nodes.txt') LL = (NH, NV) points -= np.mean(points, axis=0) # Do initial (generous) cropping if not using entire lattice if lp['NP_load'] == 0: if lp['check']: plt.plot(points[:, 0], points[:, 1], 'b.') plt.title('Point set before initial cutting') plt.show() xytmp, trash1, trash2, trash3 = \ blf.mask_with_polygon(lp['shape'], NH * 2. + 5, NV * 2. + 5, points, [], eps=0.00) polygon = blf.auto_polygon(lp['shape'], NH, NV, eps=0.00) if lp['check']: plt.plot(xytmp[:, 0], xytmp[:, 1], 'b.') plt.title('Point set after initial cutting') plt.show() xy, NL, KL, BL = le.delaunay_centroid_lattice_from_pts( xytmp, polygon=polygon, trimbound=False, check=lp['check']) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] periodicBCstr = '' else: polygon = 0.5 * np.array([[-LL[0], -LL[1]], [LL[0], -LL[1]], [LL[0], LL[1]], [-LL[0], LL[1]]]) xy, NL, KL, BL, PVxydict = le.delaunay_centroid_rect_periodic_network_from_pts( points, LL, BBox='auto', check=lp['check']) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) periodicBCstr = '_periodic' if lp['check']: plt.plot(xy[:, 0], xy[:, 1], 'b.') plt.title('Point set after decoration and cropping') plt.show() # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale polygon *= scale LL = (LL[0] * scale, LL[1] * scale) if lp['NP_load'] != 0: PVx *= scale PVy *= scale PVxydict.update((key, val * scale) for key, val in PVxydict.items()) if use_hexner: lattice_exten = 'iscentroid_' + lp[ 'shape'] + periodicBCstr + '_hexner_size' + sizestr + '_conf' + numberstr else: lattice_exten = 'iscentroid_' + lp[ 'shape'] + periodicBCstr + '_homog_zindex' + zindex + '_conf' + number[ 1:] BBox = polygon LV = 'none' LVUC = 'none' UC = 'none' return xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten
def build_kagome_isocent(lp): """ Parameters ---------- lp Returns ------- """ shape = lp['shape'] check = lp['check'] NH = lp['NH'] NV = lp['NV'] print('Loading isostatic to build kagome-decorated lattice...') import lepm.build.build_jammed as build_jammed use_hexner = (lp['source'] == 'hexner') if use_hexner: # Use Daniel Hexner's lattices points, BL, LLv, numberstr, sizestr, lp = build_jammed.load_hexner_jammed( lp, BL_load=False) LL = (LLv, LLv) else: number = '{0:03d}'.format(int(lp['loadlattice_number'])) zindex = '{0:03d}'.format(int(lp['loadlattice_z'])) points = np.loadtxt(lp['rootdir'] + 'networks/' + 'isostatic_source/isostatic_homog_z' + zindex + '_conf' + number + '_nodes.txt') # LL = NH points -= np.mean(points, axis=0) # Separate procedure if not using entire lattice if lp['NP_load'] == 0: # Do initial (generous) cropping if not using entire lattice if check: plt.plot(points[:, 0], points[:, 1], 'b.') plt.title('Point set before initial cutting') plt.show() xytmp, trash1, trash2, trash3 = blf.mask_with_polygon(shape, NH * 1.2 + 8, NV * 1.2 + 8, points, [], eps=0.) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) if check: plt.plot(xytmp[:, 0], xytmp[:, 1], 'b.') plt.title('Point set after initial cutting') plt.show() xy, NL, KL, BL = blf.kagomecentroid_lattice_from_pts(xytmp, polygon=polygon, trimbound=False, thres=2.0, check=lp['check']) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] periodicBCstr = '' else: polygon = 0.5 * np.array([[-LL[0], -LL[1]], [LL[0], -LL[1]], [LL[0], LL[1]], [-LL[0], LL[1]]]) xy, NL, KL, BL, PVxydict = blf.kagomecentroid_periodic_network_from_pts( points, LL, BBox='auto', check=lp['check']) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) periodicBCstr = '_periodic' if check: plt.plot(xy[:, 0], xy[:, 1], 'b.') plt.title('Point set after decoration and cropping') plt.show() # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale polygon *= scale LL = (LL[0] * scale, LL[1] * scale) if lp['NP_load'] != 0: PVx *= scale PVy *= scale PVxydict.update((key, val * scale) for key, val in PVxydict.items()) if use_hexner: lattice_exten = 'kagome_isocent_' + shape + periodicBCstr + '_hexner_size' + sizestr + '_conf' + numberstr else: lattice_exten = 'kagome_isocent_' + shape + periodicBCstr + '_ulrich_homog_zindex' + zindex +\ '_conf' + number[1:] BBox = polygon LV = 'none' UC = 'none' LVUC = 'none' return xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten
def build_lattice(lattice): """Build the lattice based on the values stored in the lp dictionary attribute of supplied lattice instance. Returns ------- lattice : lattice_class lattice instance The instance of the lattice class, with the following attributes populated: lattice.xy = xy lattice.NL = NL lattice.KL = KL lattice.BL = BL lattice.PVx = PVx lattice.PVy = PVy lattice.PVxydict = PVxydict lattice.PV = PV lattice.lp['BBox'] : #vertices x 2 float array BBox is the polygon used to crop the lattice or defining the extent of the lattice; could be hexagonal, for instance. lattice.lp['LL'] : tuple of 2 floats LL are the linear extent in each dimension of the lattice. For ex: ( np.max(xy[:,0])-np.min(xy[:,0]), np.max(xy[:,1])-np.min(xy[:,1]) ) lattice.lp['LV'] = LV lattice.lp['UC'] = UC lattice.lp['lattice_exten'] : str A string specifier for the lattice built lattice.lp['slit_exten'] = slit_exten """ # Define some shortcut variables lattice_type = lattice.lp['LatticeTop'] shape = lattice.lp['shape'] NH = lattice.lp['NH'] NV = lattice.lp['NV'] lp = lattice.lp networkdir = lattice.lp['rootdir'] + 'networks/' check = lattice.lp['check'] if lattice_type == 'hexagonal': from build_hexagonal import build_hexagonal xy, NL, KL, BL, PVxydict, PVx, PVy, PV, LL, LVUC, LV, UC, BBox, lattice_exten = build_hexagonal( lp) elif lattice_type == 'hexmeanfield': from build_hexagonal import build_hexmeanfield xy, NL, KL, BL, PVxydict, PVx, PVy, PV, LL, LVUC, LV, UC, BBox, lattice_exten = build_hexmeanfield( lp) elif lattice_type == 'hexmeanfield3gyro': from build_hexagonal import build_hexmeanfield3gyro xy, NL, KL, BL, PVxydict, PVx, PVy, PV, LL, LVUC, LV, UC, BBox, lattice_exten = build_hexmeanfield3gyro( lp) elif 'selregion' in lattice_type: # amorphregion_isocent or amorphregion_kagome_isocent, for ex # Example usage: python ./build/make_lattice.py -LT selregion_randorg_gammakick1p60_cent -spreadt 0.8 -NP 225 # python ./build/make_lattice.py -LT selregion_iscentroid -N 30 # python ./build/make_lattice.py -LT selregion_hyperuniform -N 80 from lepm.build.build_select_region import build_select_region xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_select_region( lp) elif lattice_type == 'frame1dhex': from build_hexagonal import build_frame1dhex # keep only the boundary of the lattice, eliminate the bulk xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_frame1dhex( lp) elif lattice_type == 'square': import lepm.build.build_square as bs print '\nCreating square lattice...' xy, NL, KL, BL, lattice_exten = bs.generate_square_lattice( shape, NH, NV, lp['eta'], lp['theta']) print 'lattice_exten = ', lattice_exten PVx = [] PVy = [] PVxydict = {} LL = (NH + 1, NV + 1) LVUC = 'none' UC = 'none' LV = 'none' BBox = np.array([[-LL[0] * 0.5, -LL[1] * 0.5], [LL[0] * 0.5, -LL[1] * 0.5], [LL[0] * 0.5, LL[1] * 0.5], [-LL[0] * 0.5, LL[1] * 0.5]]) elif lattice_type == 'triangular': import lepm.build.build_triangular as bt xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = bt.build_triangular_lattice( lp) elif lattice_type == 'linear': from lepm.build.build_linear_lattices import build_zigzag_lattice xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_zigzag_lattice( lp) lp['NV'] = 1 elif lattice_type == 'deformed_kagome': from lepm.build.build_kagome import generate_deformed_kagome xy, NL, KL, BL, PVxydict, PVx, PVy, PV, LL, LVUC, LV, UC, BBox, lattice_exten = generate_deformed_kagome( lp) elif lattice_type == 'deformed_martini': from lepm.build.build_martini import build_deformed_martini xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_deformed_martini( lp) elif lattice_type == 'twisted_kagome': from lepm.build.build_kagome import build_twisted_kagome xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_twisted_kagome( lp) elif lattice_type == 'hyperuniform': from lepm.build.build_hyperuniform import build_hyperuniform xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_hyperuniform( lp) elif lattice_type == 'hyperuniform_annulus': from lepm.build.build_hyperuniform import build_hyperuniform_annulus xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_hyperuniform_annulus( lp) lp['shape'] = 'annulus' elif lattice_type == 'isostatic': from lepm.build.build_jammed import build_isostatic # Manually tune coordination of jammed packing (lets you tune through isostatic point) xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_isostatic( lp) elif lattice_type == 'jammed': from lepm.build.build_jammed import build_jammed xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_jammed( lp) elif lattice_type == 'triangularz': from lepm.build.build_triangular import build_triangularz xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_triangularz( lp) elif lattice_type == 'hucentroid': from lepm.build.build_hucentroid import build_hucentroid xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_hucentroid( lp) elif lattice_type == 'hucentroid_annulus': from lepm.build.build_hucentroid import build_hucentroid_annulus xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_hucentroid_annulus( lp) lp['shape'] = 'annulus' elif lattice_type == 'huvoronoi': from lepm.build.build_voronoized import build_huvoronoi xy, NL, KL, BL, PVx, PVy, PVxydict, LL, BBox, lattice_exten = build_huvoronoi( lp) LVUC = 'none' LV = 'none' UC = 'none' elif lattice_type == 'kagome_hucent': from lepm.build.build_hucentroid import build_kagome_hucent xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_kagome_hucent( lp) elif lattice_type == 'kagome_hucent_annulus': from lepm.build.build_hucentroid import build_kagome_hucent_annulus xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_kagome_hucent_annulus( lp) lp['shape'] = 'annulus' elif lattice_type == 'kagome_huvor': from lepm.build.build_voronoized import build_kagome_huvor print('Loading hyperuniform to build lattice...') xy, NL, KL, BL, PVx, PVy, PVxydict, LL, BBox, lattice_exten = build_kagome_huvor( lp) LV, LVUC, UC = 'none', 'none', 'none' elif lattice_type == 'iscentroid': from lepm.build.build_iscentroid import build_iscentroid print('Loading isostatic to build lattice...') xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten = build_iscentroid( lp) elif lattice_type == 'kagome_isocent': from lepm.build.build_iscentroid import build_kagome_isocent xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten = build_kagome_isocent( lp) elif lattice_type == 'overcoordinated1': from lepm.build.build_overcoordinated import generate_overcoordinated1_lattice xy, NL, KL, BL, SBL, LV, UC, LVUC, lattice_exten = generate_overcoordinated1_lattice( NH, NV) PVxydict = {} PVx = [] PVy = [] if lp['check']: le.display_lattice_2D(xy, BL) elif lattice_type == 'circlebonds': from lepm.build.build_linear_lattices import generate_circle_lattice xy, NL, KL, BL, LV, UC, LVUC, lattice_exten = generate_circle_lattice( NH) PVxydict = {} PVx = [] PVy = [] lp['NV'] = 1 minx = np.min(xy[:, 0]) maxx = np.max(xy[:, 0]) miny = np.min(xy[:, 1]) maxy = np.max(xy[:, 1]) BBox = np.array([[minx, miny], [minx, maxy], [maxx, maxy], [maxx, miny]]) LL = (maxx - minx, maxy - miny) elif lattice_type == 'dislocatedRand': from lepm.build.build_dislocatedlattice import build_dislocated_lattice xy, NL, KL, BL, PVx, PVy, PVxydict, LL, BBox, lattice_exten = build_dislocated_lattice( lp) elif lattice_type == 'dislocated': if lp['dislocation_xy'] != 'none': dislocX = lp['dislocation_xy'].split('/')[0] dislocY = lp['dislocation_xy'].split('/')[1] dislocxy_exten = '_dislocxy_' + dislocX + '_' + dislocY pt = np.array([[float(dislocX), float(dislocY)]]) else: pt = np.array([[0., 0.]]) dislocxy_exten = '' if lp['Bvec'] == 'random': Bvecs = 'W' else: Bvecs = lp['Bvec'] xy, NL, KL, BL, lattice_exten = generate_dislocated_hexagonal_lattice( shape, NH, NV, pt, Bvecs=Bvecs, check=lp['check']) lattice_exten += dislocxy_exten PVx = [] PVy = [] PVxydict = {} LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) BBox = np.array([[np.min(xy[:, 0]), np.min(xy[:, 1])], [np.max(xy[:, 0]), np.min(xy[:, 1])], [np.max(xy[:, 0]), np.max(xy[:, 1])], [np.min(xy[:, 0]), np.max(xy[:, 1])]]) LV = 'none' UC = 'none' LVUC = 'none' elif lattice_type == 'penroserhombTri': if lp['periodicBC']: from lepm.build.build_quasicrystal import generate_periodic_penrose_rhombic xy, NL, KL, BL, PVxydict, BBox, PV, lattice_exten = generate_periodic_penrose_rhombic( lp) LL = (PV[0, 0], PV[1, 1]) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) else: from lepm.build.build_quasicrystal import generate_penrose_rhombic_lattice xy, NL, KL, BL, lattice_exten, Num_sub = generate_penrose_rhombic_lattice( shape, NH, NV, check=lp['check']) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) BBox = blf.auto_polygon(shape, NH, NV, eps=0.00) PVx = [] PVy = [] PVxydict = {} LVUC = 'none' LV = 'none' UC = 'none' elif lattice_type == 'penroserhombTricent': from lepm.build.build_quasicrystal import generate_penrose_rhombic_centroid_lattice xy, NL, KL, BL, PVxydict, PV, LL, BBox, lattice_exten = generate_penrose_rhombic_centroid_lattice( lp) # deepcopy PVxydict to generate new pointers PVxydict = copy.deepcopy(PVxydict) if lp['periodicBC']: PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) else: PVx, PVy = [], [] # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale PV *= scale print 'PV = ', PV BBox *= scale LL = (LL[0] * scale, LL[1] * scale) print 'after updating other things: PVxydict = ', PVxydict if lp['periodicBC']: PVx *= scale PVy *= scale PVxydict.update( (key, val * scale) for key, val in PVxydict.items()) else: PVx = [] PVy = [] LVUC = 'none' LV = 'none' UC = 'none' elif lattice_type == 'kagome_penroserhombTricent': from build.build_quasicrystal import generate_penrose_rhombic_centroid_lattice xy, NL, KL, BL, lattice_exten = generate_penrose_rhombic_centroid_lattice( shape, NH + 5, NV + 5, check=lp['check']) # Decorate lattice as kagome print('Decorating lattice as kagome...') xy, BL, PVxydict = blf.decorate_as_kagome(xy, BL) lattice_exten = 'kagome_' + lattice_exten xy, NL, KL, BL = blf.mask_with_polygon(shape, NH, NV, xy, BL, eps=0.00, check=False) # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL) xy *= 1. / np.median(bL) minx = np.min(xy[:, 0]) miny = np.min(xy[:, 1]) maxx = np.max(xy[:, 0]) maxy = np.max(xy[:, 1]) BBox = np.array([[minx, miny], [minx, maxy], [maxx, maxy], [maxx, miny]]) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVx = [] PVy = [] PVxydict = {} LVUC = 'none' LV = 'none' UC = 'none' elif lattice_type == 'random': xx = np.random.uniform(low=-NH * 0.5 - 10, high=NH * 0.5 + 10, size=(NH + 20) * (NV + 20)) yy = np.random.uniform(low=-NV * 0.5 - 10, high=NV * 0.5 + 10, size=(NH + 20) * (NV + 20)) xy = np.dstack((xx, yy))[0] Dtri = Delaunay(xy) TRI = Dtri.vertices BL = le.Tri2BL(TRI) NL, KL = le.BL2NLandKL(BL, NN='min') # Crop to polygon (instead of trimming boundaries) # NL, KL, BL, TRI = le.delaunay_cut_unnatural_boundary(xy, NL, KL, BL, TRI, thres=lp['trimbound_thres']) shapedict = {shape: [NH, NV]} keep = blf.argcrop_lattice_to_polygon(shapedict, xy, check=check) xy, NL, KL, BL = le.remove_pts(keep, xy, BL, NN='min') lattice_exten = lattice_type + '_square_thres' + sf.float2pstr( lp['trimbound_thres']) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) BBox = polygon LL = (np.max(BBox[:, 0]) - np.min(BBox[:, 0]), np.max(BBox[:, 1]) - np.min(BBox[:, 1])) PVx = [] PVy = [] PVxydict = {} LVUC = 'none' LV = 'none' UC = 'none' elif lattice_type == 'randomcent': from lepm.build.build_random import build_randomcent xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_randomcent( lp) elif lattice_type == 'kagome_randomcent': from lepm.build.build_random import build_kagome_randomcent xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_kagome_randomcent( lp) elif lattice_type == 'randomspreadcent': from lepm.build.build_randomspread import build_randomspreadcent xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_randomspreadcent( lp) elif lattice_type == 'kagome_randomspread': from lepm.build.build_randomspread import build_kagome_randomspread xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_kagome_randomspread( lp) elif 'randorg_gammakick' in lattice_type and 'kaghi' not in lattice_type: # lattice_type is like 'randorg_gamma0p20_cent' and uses Hexner pointsets # NH is width, NV is height, NP_load is total number of points. This is different than other conventions. from build_randorg_gamma import build_randorg_gamma_spread xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_randorg_gamma_spread( lp) elif 'randorg_gamma' in lattice_type and 'kaghi' not in lattice_type: # lattice_type is like 'randorg_gamma0p20_cent' and uses Hexner pointsets from build_randorg_gamma import build_randorg_gamma_spread_hexner xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = \ build_randorg_gamma_spread_hexner(lp) elif 'random_organization' in lattice_type: try: if isinstance(lp['relax_timesteps'], str): relax_tag = lp['relax_timesteps'] else: relax_tag = '{0:02d}'.format(lp['relax_timesteps']) except: raise RuntimeError( 'lattice parameters dictionary lp needs key relax_timesteps') points = np.loadtxt( networkdir + 'random_organization_source/random_organization/random/' + 'random_kick_' + relax_tag + 'relax/out_d' + '{0:02d}'.format(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) xytmp, trash1, trash2, trash3 = blf.mask_with_polygon(shape, NH, NV, points, [], eps=0.00) xy, NL, KL, BL = le.delaunay_centroid_lattice_from_pts(xytmp, polygon='auto', check=check) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) if check: le.display_lattice_2D(xy, BL) # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) xy *= 1. / np.median(bL) polygon *= 1. / np.median(bL) lattice_exten = lattice_type + '_relax' + relax_tag + '_' + shape + '_d' + \ '{0:02d}'.format(int(lp['loadlattice_number'])) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] BBox = polygon elif lattice_type == 'flattenedhexagonal': from lepm.build.build_hexagonal import generate_flattened_honeycomb_lattice xy, NL, KL, BL, LVUC, LV, UC, PVxydict, PVx, PVy, lattice_exten = \ generate_flattened_honeycomb_lattice(shape, NH, NV, lp['aratio'], lp['delta'], lp['phi'], eta=0., rot=0., periodicBC=False, check=check) elif lattice_type == 'cairo': from lepm.build.build_cairo import build_cairo xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = build_cairo( lp) elif lattice_type == 'kagper_hucent': from lepm.build.build_hucentroid import build_kagper_hucent xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagper_hucent( lp) elif lattice_type == 'hex_kagframe': from lepm.build.build_kagcentframe import build_hex_kagframe # Use lp['alph'] to determine the beginning of the kagomized frame, surrounding hexagonal lattice xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_hex_kagframe( lp) elif lattice_type == 'hex_kagcframe': from lepm.build.build_kagcentframe import build_hex_kagcframe # Use lp['alph'] to determine the beginning of the kagomized frame, surrounding hexagonal lattice # as circlular annulus xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_hex_kagcframe( lp) elif lattice_type in ['hucent_kagframe', 'hucent_kagcframe']: from lepm.build.build_kagcentframe import build_hucent_kagframe # Use lp['alph'] to determine the beginning of the kagomized frame, surrounding hucentroid decoration xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_hucent_kagframe( lp) elif lattice_type == 'kaghu_centframe': from lepm.build.build_kagcentframe import build_kaghu_centframe # Use lp['alph'] to determine the beginning of the centroid frame, surrounding kagomized decoration xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kaghu_centframe( lp) elif lattice_type in ['isocent_kagframe', 'isocent_kagcframe']: from lepm.build.build_kagcentframe import build_isocent_kagframe # Use lp['alph'] to determine the beginning of the kagomized frame, surrounding hucentroid decoration xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_isocent_kagframe( lp) elif lattice_type == 'kagsplit_hex': from lepm.build.build_kagome import build_kagsplit_hex # Use lp['alph'] to determine what fraction (on the right) is kagomized xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagsplit_hex( lp) elif lattice_type == 'kagper_hex': from lepm.build.build_kagome import build_kagper_hex # Use lp['alph'] to determine what fraction of the radius/width (in the center) is kagomized xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagper_hex( lp) elif lattice_type == 'hex_kagperframe': from lepm.build.build_kagcentframe import build_hex_kagperframe # Use lp['alph'] to determine what fraction of the radius/width (in the center) is partially kagomized xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_hex_kagperframe( lp) elif lattice_type == 'kagome': from lepm.build.build_kagome import build_kagome # lets you make a square kagome xy, NL, KL, BL, PVx, PVy, PVxydict, PV, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagome( lp) elif 'uofc' in lattice_type: from lepm.build.build_kagcent_words import build_uofc # ['uofc_hucent', 'uofc_kaglow_hucent', 'uofc_kaghi_hucent', 'uofc_kaglow_isocent']: xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_uofc( lp) elif 'chicago' in lattice_type: from lepm.build.build_kagcent_words import build_chicago xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_chicago( lp) elif 'chern' in lattice_type: from lepm.build.build_kagcent_words import build_kagcentchern xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagcentchern( lp) elif 'csmf' in lattice_type: from lepm.build.build_kagcent_words import build_kagcentcsmf xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagcentcsmf( lp) elif 'thanks' in lattice_type: # example: # python ./build/make_lattice.py -LT kaghi_isocent_thanks -skip_gyroDOS -NH 300 -NV 70 -thres 5.5 -skip_polygons from lepm.build.build_kagcent_words import build_kagcentthanks xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagcentthanks( lp) elif 'curvys' in lattice_type: # for lattice_type in ['kaghi_isocent_curvys', 'kaglow_isocent_curvys', # 'kaghi_hucent_curvys', 'kaglow_hucent_curvys', kaghi_randorg_gammakick1p60_cent_curvys', # 'kaghi_randorg_gammakick0p50_cent_curvys', ... ] # example usage: # python ./build/make_lattice.py -LT kaghi_isocent_curvys -NH 100 -NV 70 -thres 5.5 -skip_polygons -skip_gyroDOS from lepm.build.build_kagcent_words import build_kagcentcurvys xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagcentcurvys( lp) elif 'hexannulus' in lattice_type: from lepm.build.build_conformal import build_hexannulus xy, NL, KL, BL, lattice_exten, lp = build_hexannulus(lp) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] UC = np.array([0, 0]) LV = 'none' LVUC = 'none' minx = np.min(xy[:, 0]) miny = np.min(xy[:, 1]) maxx = np.max(xy[:, 0]) maxy = np.max(xy[:, 1]) BBox = np.array([[minx, miny], [minx, maxy], [maxx, maxy], [maxx, miny]]) elif 'accordion' in lattice_type: # accordionhex accordiony accordionkagy # Example usage: # python ./build/make_lattice.py -LT accordionkag -alph 0.9 -intparam 2 -N 6 -skip_polygons -skip_gyroDOS # nzag controlled by lp['intparam'], and the rotation of the kagome element is controlled by lp['alph'] if lattice_type == 'accordionhex': from lepm.build.build_hexagonal import build_accordionhex xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp, xyvx = build_accordionhex( lp) elif lattice_type == 'accordionkag': from lepm.build.build_kagome import build_accordionkag xy, NL, KL, BL, PVx, PVy, PVxydict, PV, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_accordionkag( lp) elif lattice_type == 'accordionkag_hucent': from lepm.build.build_hucentroid import build_accordionkag_hucent xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = \ build_accordionkag_hucent(lp) elif lattice_type == 'accordionkag_isocent': from lepm.build.build_iscentroid import build_accordionkag_isocent xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten = \ build_accordionkag_isocent(lp) elif 'spindle' in lattice_type: if lattice_type == 'spindle': from lepm.build.build_spindle import build_spindle xy, NL, KL, BL, PVxydict, PVx, PVy, PV, LL, LVUC, LV, UC, BBox, lattice_exten = build_spindle( lp) elif lattice_type == 'stackedrhombic': from lepm.build.build_rhombic import build_stacked_rhombic xy, NL, KL, BL, PVxydict, PVx, PVy, PV, LL, LVUC, LV, UC, BBox, lattice_exten = build_stacked_rhombic( lp) elif 'junction' in lattice_type: # accordionhex accordiony accordionkagy if lattice_type == 'hexjunction': from lepm.build.build_hexagonal import build_hexjunction xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp, xyvx = build_hexjunction( lp) elif lattice_type == 'kagjunction': from lepm.build.build_kagome import build_kagjunction xy, NL, KL, BL, PVx, PVy, PVxydict, LVUC, BBox, LL, LV, UC, lattice_exten, lp = build_kagjunction( lp) ########### # For reference: this is how to change z # le.cut_bonds_z(BL,lp['target_z']) # ##cut N bonds for z # N2cut = int(round((z_start-target_z)*len(BL)/z_start)) # allrows = range(len(BL)) # inds = random.sample(allrows, N2cut) # keep = np.setdiff1d(allrows,inds) # bnd_z = BL[keep] # Cut slit if lp['make_slit']: print('Cuting notch or slit...') L = max(xy[:, 0]) - min(xy[:, 0]) cutL = L * lp['cutLfrac'] x0 = -L * 0. + cutL * 0.5 - 1. # 0.25*L+0.5 BL, xy = blf.cut_slit(BL, xy, cutL + 1e-3, x0, y0=0.2) slit_exten = '_cutL' + str(cutL / L) + 'L_x0_' + str(x0) print('Rebuilding NL,KL...') NP = len(xy) if latticetop == 'deformed_kagome': nn = 4 elif lattice_type == 'linear': if NP == 1: nn = 0 else: nn = 2 else: nn = 'min' NL, KL = le.BL2NLandKL(BL, NP=NP, NN=nn) # remake BL too BL = le.NL2BL(NL, KL) else: slit_exten = '' NP = len(xy) if lp['check']: print 'make_lattice: Showing lattice before saving...' # print 'PVx = ', PVx # print 'PVy = ', PVy le.display_lattice_2D(xy, BL, PVxydict=PVxydict) ################ lattice.xy = xy lattice.NL = NL lattice.KL = KL lattice.BL = BL lattice.PVx = PVx lattice.PVy = PVy lattice.PVxydict = PVxydict lattice.LVUC = LVUC lattice.lp = lp lattice.lp['BBox'] = BBox lattice.lp['LL'] = LL lattice.lp['LV'] = LV lattice.lp['UC'] = UC lattice.lp['lattice_exten'] = lattice_exten lattice.lp['slit_exten'] = slit_exten lattice.lp['Nparticles'] = NP return lattice
def build_kagome_huvor(lp): """Construct a kagomized network from hyperuniform point set and voronoize it with Wigner-Seitz Parameters ---------- lp : dict Lattice parameters dictionary, with keys: rootdir, conf, origin, shape, NH, NV, check, NP_load (if periodic) """ if lp['NP_load'] == 0: points = np.loadtxt( dio.prepdir(lp['rootdir']) + 'networks/hyperuniform_source/hyperuniform_N400/out_d' + str(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) + lp['origin'] addpc = .05 xytmp, trash1, trash2, trash3 = \ blf.mask_with_polygon(lp['shape'], lp['NH'] + 7, lp['NV'] + 7, points, [], eps=addpc) polygon = blf.auto_polygon(lp['shape'], lp['NH'], lp['NV'], eps=0.00) xy, NL, KL, BL = blf.kagomevoronoi_network_from_pts(xytmp, polygon=polygon, kill_outliers=True, check=lp['check']) LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict, PVx, PVy = {}, [], [] BBox = polygon if lp['check']: le.display_lattice_2D( xy, BL, NL=NL, KL=KL, title='Cropped centroid lattice, before dilation') # make string from origin values print 'lp[origin] = ', lp['origin'] print 'type(lp[origin]) = ', type(lp['origin']) if (np.abs(lp['origin']) < 1e-7).all(): originstr = '' else: originstr = '_originX' + '{0:0.2f}'.format(lp['origin'][0]).replace('.', 'p') + \ 'Y' + '{0:0.2f}'.format(lp['origin'][1]).replace('.', 'p') periodicBCstr = '' else: # Ensuring that origin param is centered (since using entire lattice) lp['origin'] = np.array([0.0, 0.0]) LL = (lp['NP_load'], lp['NP_load']) polygon = 0.5 * np.array([[-LL[0], -LL[1]], [LL[0], -LL[1]], [LL[0], LL[1]], [-LL[0], LL[1]]]) BBox = polygon lp['periodicBC'] = True sizestr = '{0:03d}'.format(lp['NP_load']) points = np.loadtxt( dio.prepdir(lp['rootdir']) + 'networks/hyperuniform_source/hyperuniform_N' + sizestr + '/out_d' + str(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) xy, NL, KL, BL, PVxydict = blf.kagomevoronoi_periodic_network_from_pts( points, LL, BBox=BBox, check=lp['check']) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) originstr = '' periodicBCstr = '_periodic' # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale polygon *= scale BBox *= scale LL = (LL[0] * scale, LL[1] * scale) if lp['periodicBC']: PVx *= scale PVy *= scale PVxydict.update((key, val * scale) for key, val in PVxydict.items()) lattice_exten = 'kagome_huvor_' + lp[ 'shape'] + periodicBCstr + '_d{0:02d}'.format(int( lp['conf'])) + originstr return xy, NL, KL, BL, PVx, PVy, PVxydict, LL, BBox, lattice_exten
def build_accordionkag_hucent(lp): """Create an accordion-bonded kagomized amorphous network from a loaded hyperuniform point set. Parameters ---------- lp Returns ------- """ print('Loading hyperuniform to build lattice...') networkdir = lp['rootdir'] + 'networks/' shape = lp['shape'] NH = lp['NH'] NV = lp['NV'] check = lp['check'] if lp['NP_load'] == 0: points = np.loadtxt(networkdir + 'hyperuniform_source/hyperuniform_N400/out_d' + str(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) + lp['origin'] addpc = .05 xytmp, trash1, trash2, trash3 = blf.mask_with_polygon(shape, NH + 4, NV + 4, points, [], eps=addpc) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) xy, NL, KL, BL = le.delaunay_centroid_lattice_from_pts( xytmp, polygon=polygon, trimbound=False) # check=check) ################################################################# # nzag controlled by lp['intparam'] below xyacc, BLacc, LVUC, UC, xyvertices, lattice_exten_add = \ blf.accordionize_network(xy, BL, lp, PVxydict=None, PVx=None, PVy=None, PV=None) print 'BL = ', BL # need indices of xy that correspond to xyvertices # note that xyvertices gives the positions of the vertices, not their indices inRx = np.in1d(xyacc[:, 0], xyvertices[:, 0]) inRy = np.in1d(xyacc[:, 1], xyvertices[:, 1]) vxind = np.where(np.logical_and(inRx, inRy))[0] print 'vxind = ', vxind # Note: beware, do not provide NL and KL to decorate_bondneighbors_elements() since NL,KL need # to be recalculated xy, BL = blf.decorate_bondneighbors_elements(xyacc, BLacc, vxind, PVxydict=None, viewmethod=False, check=lp['check']) NL, KL = le.BL2NLandKL(BL, NP=len(xy)) ################################################################# polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) if check: le.display_lattice_2D( xy, BL, NL=NL, KL=KL, title='Cropped centroid lattice, before dilation') # Form output bounding box and extent measurement LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] BBox = polygon # make string from origin values print 'lp[origin] = ', lp['origin'] print 'type(lp[origin]) = ', type(lp['origin']) if (np.abs(lp['origin']) < 1e-7).all(): originstr = '' else: originstr = '_originX' + '{0:0.2f}'.format(lp['origin'][0]).replace('.', 'p') + \ 'Y' + '{0:0.2f}'.format(lp['origin'][1]).replace('.', 'p') periodicBCstr = '' else: # Ensuring that origin param is centered (since using entire lattice) lp['origin'] = np.array([0.0, 0.0]) LL = (lp['NP_load'], lp['NP_load']) polygon = 0.5 * np.array([[-LL[0], -LL[1]], [LL[0], -LL[1]], [LL[0], LL[1]], [-LL[0], LL[1]]]) BBox = polygon lp['periodicBC'] = True sizestr = '{0:03d}'.format(lp['NP_load']) points = np.loadtxt(networkdir + 'hyperuniform_source/hyperuniform_N' + sizestr + '/out_d' + \ str(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) xy, NL, KL, BL, PVxydict = blf.kagomecentroid_periodic_network_from_pts( points, LL, BBox=BBox, check=lp['check']) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) originstr = '' periodicBCstr = '_periodic' # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale polygon *= scale BBox *= scale LL = (LL[0] * scale, LL[1] * scale) if lp['periodicBC']: PVx *= scale PVy *= scale PVxydict.update((key, val * scale) for key, val in PVxydict.items()) lattice_exten = 'accordionkag_hucent_' + shape + periodicBCstr + '_d{0:02d}'.format(int(lp['conf'])) + originstr + \ lattice_exten_add LV = 'none' LVUC = 'none' UC = 'none' return xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten
def build_kagome_hucent(lp): print('Loading hyperuniform to build lattice...') networkdir = lp['rootdir'] + 'networks/' shape = lp['shape'] NH = lp['NH'] NV = lp['NV'] check = lp['check'] if lp['NP_load'] == 0: points = np.loadtxt(networkdir + 'hyperuniform_source/hyperuniform_N400/out_d' + str(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) + lp['origin'] addpc = .05 xytmp, trash1, trash2, trash3 = blf.mask_with_polygon(shape, NH + 4, NV + 4, points, [], eps=addpc) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) xy, NL, KL, BL = blf.kagomecentroid_lattice_from_pts(xytmp, polygon=polygon, trimbound=False, check=check) polygon = blf.auto_polygon(shape, NH, NV, eps=0.00) if check: le.display_lattice_2D( xy, BL, NL=NL, KL=KL, title='Cropped centroid lattice, before dilation') # Form output bounding box and extent measurement LL = (np.max(xy[:, 0]) - np.min(xy[:, 0]), np.max(xy[:, 1]) - np.min(xy[:, 1])) PVxydict = {} PVx = [] PVy = [] BBox = polygon # make string from origin values print 'lp[origin] = ', lp['origin'] print 'type(lp[origin]) = ', type(lp['origin']) if (np.abs(lp['origin']) < 1e-7).all(): originstr = '' else: originstr = '_originX' + '{0:0.2f}'.format(lp['origin'][0]).replace('.', 'p') + \ 'Y' + '{0:0.2f}'.format(lp['origin'][1]).replace('.', 'p') periodicBCstr = '' else: # Ensuring that origin param is centered (since using entire lattice) lp['origin'] = np.array([0.0, 0.0]) LL = (lp['NP_load'], lp['NP_load']) polygon = 0.5 * np.array([[-LL[0], -LL[1]], [LL[0], -LL[1]], [LL[0], LL[1]], [-LL[0], LL[1]]]) BBox = polygon lp['periodicBC'] = True sizestr = '{0:03d}'.format(lp['NP_load']) points = np.loadtxt(networkdir + 'hyperuniform_source/hyperuniform_N' + sizestr + '/out_d' + \ str(int(lp['conf'])) + '_xy.txt') points -= np.mean(points, axis=0) xy, NL, KL, BL, PVxydict = blf.kagomecentroid_periodic_network_from_pts( points, LL, BBox=BBox, check=lp['check']) PVx, PVy = le.PVxydict2PVxPVy(PVxydict, NL) originstr = '' periodicBCstr = '_periodic' # Rescale so that median bond length is unity bL = le.bond_length_list(xy, BL, NL=NL, KL=KL, PVx=PVx, PVy=PVy) scale = 1. / np.median(bL) xy *= scale polygon *= scale BBox *= scale LL = (LL[0] * scale, LL[1] * scale) if lp['periodicBC']: PVx *= scale PVy *= scale PVxydict.update((key, val * scale) for key, val in PVxydict.items()) lattice_exten = 'kagome_hucent_' + shape + periodicBCstr + '_d{0:02d}'.format( int(lp['conf'])) + originstr LV = 'none' LVUC = 'none' UC = 'none' return xy, NL, KL, BL, PVxydict, PVx, PVy, LL, LVUC, LV, UC, BBox, lattice_exten