def single_scan_for_max_temperature(self): lepton_interface = Lepton_interface() # time.sleep(0.2) raw_values = lepton_interface.get_raw_values() # Get camera output (raw values) max_temperature_old = self.get_max_temperature_data(raw_values) # Get the maximum temperature from raw values return max_temperature_old # Return the max temperature
def iterate_for_max_temperature(self): lepton_interface = Lepton_interface() ITERATIONS = 5 # How many times to take image max_temperature_old = { "max_raw_pixel": 0, "max_pixel_locations_x": 0, "max_pixel_locations_y": 0, "max_temperature": 0, "raw_values": 0, "min_temperature": 0 } # Initialize variable for i in range(0, ITERATIONS - 1): # Repeat as required by Iterations time.sleep(0.2) raw_values = lepton_interface.get_raw_values( ) # Get camera output (raw values) max_temperature_new = self.get_max_temperature_data( raw_values) # Get the maximum temperature from raw values if max_temperature_new["max_temperature"] > max_temperature_old[ "max_temperature"]: max_temperature_old = max_temperature_new # If new temp is max, record new max temperature else: continue # Else keep the old max temperature and continue return max_temperature_old # Return the max temperature
def single_scan_for_max_temperature(self): lepton_interface = Lepton_interface() # time.sleep(0.2) raw_values = lepton_interface.get_raw_values( ) # Get camera output (raw values) max_temperature_old = self.get_max_temperature_data( raw_values) # Get the maximum temperature from raw values return max_temperature_old # Return the max temperature
def coloured_image_from_raw(self,raw_values, image_scalar): STORED_IMAGE_NAME = "DetectionImage1.jpg" lepton_object = Lepton_interface() # Convert raw data to 8 bit image - takes 0.0008s bit8_image = lepton_object.raw_to_8bit(raw_values) bit8_image = bit8_image.astype(uint8) # Remove non-needed dimension bit8_image = bit8_image.squeeze() # Colour image takes ~0.005 coloured_image = self.colour_thermal_image(bit8_image) # Scale 8 bit coloured image # CV_INTER_CUBIC might be used - slow but looks better. INTER_NEAREST. # INTER_LINEAR takes ~0.025s INTER_CUBIC - ~0.07s. Nearest - 0.01s coloured_image = cv2.resize(coloured_image, (0,0), None, image_scalar, image_scalar, cv2.INTER_LINEAR) # Takes ~0.2s, updated one takes ~0.0001s # cv2.imwrite(STORED_IMAGE_NAME, np.uint8(coloured_image)) # Write the image to file mat_array = cv.fromarray(coloured_image) # Take the image from file as SIMPLECV image. Updated one ~0.005s simplecv_img = Image(mat_array) # simplecv_img = Image(STORED_IMAGE_NAME) return simplecv_img
def iterate_for_max_temperature(self): lepton_interface = Lepton_interface() ITERATIONS = 5 # How many times to take image max_temperature_old = {"max_raw_pixel": 0, "max_pixel_locations_x": 0, "max_pixel_locations_y": 0, "max_temperature": 0, "raw_values": 0, "min_temperature": 0} # Initialize variable for i in range(0, ITERATIONS-1): # Repeat as required by Iterations time.sleep(0.2) raw_values = lepton_interface.get_raw_values() # Get camera output (raw values) max_temperature_new = self.get_max_temperature_data(raw_values) # Get the maximum temperature from raw values if max_temperature_new["max_temperature"] > max_temperature_old["max_temperature"]: max_temperature_old = max_temperature_new # If new temp is max, record new max temperature else: continue # Else keep the old max temperature and continue return max_temperature_old # Return the max temperature
def coloured_image_from_raw(self, raw_values, image_scalar): STORED_IMAGE_NAME = "DetectionImage1.jpg" lepton_object = Lepton_interface() # Convert raw data to 8 bit image - takes 0.0008s bit8_image = lepton_object.raw_to_8bit(raw_values) bit8_image = bit8_image.astype(uint8) # Remove non-needed dimension bit8_image = bit8_image.squeeze() # Colour image takes ~0.005 coloured_image = self.colour_thermal_image(bit8_image) # Scale 8 bit coloured image # CV_INTER_CUBIC might be used - slow but looks better. INTER_NEAREST. # INTER_LINEAR takes ~0.025s INTER_CUBIC - ~0.07s. Nearest - 0.01s coloured_image = cv2.resize(coloured_image, (0, 0), None, image_scalar, image_scalar, cv2.INTER_LINEAR) # Takes ~0.2s, updated one takes ~0.0001s # cv2.imwrite(STORED_IMAGE_NAME, np.uint8(coloured_image)) # Write the image to file mat_array = cv.fromarray(coloured_image) # Take the image from file as SIMPLECV image. Updated one ~0.005s simplecv_img = Image(mat_array) # simplecv_img = Image(STORED_IMAGE_NAME) return simplecv_img