param = { 'colsample_bytree': 0.8, 'subsample': 0.1, 'learning_rate': 0.1, 'metric': 'auc', 'max_depth': 4, 'objective': 'binary', 'nthread': 64, 'seed': SEED } gc.collect() yhat, imp, ret = ex.stacking(X, y, param, NROUND, nfold=5, esr=50, categorical_feature=categorical_feature) t = datetime.today() date = t.date() hour = t.hour imp.to_csv('imp_{}-{:02d}h.csv'.format(date, hour), index=False) # ============================================================================= # cv # ============================================================================= #model = xgb.train(param, dbuild, NROUND, watchlist, verbose_eval=10, # early_stopping_rounds=50)
'max_bin': 100, 'colsample_bytree': 0.5, 'subsample': 0.5, 'nthread': 64, 'bagging_freq': 1, 'seed': SEED } categorical_feature = [ 'NAME_CONTRACT_TYPE', 'CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'NAME_TYPE_SUITE', 'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'OCCUPATION_TYPE', 'WEEKDAY_APPR_PROCESS_START', 'ORGANIZATION_TYPE', 'FONDKAPREMONT_MODE', 'HOUSETYPE_MODE', 'WALLSMATERIAL_MODE', 'EMERGENCYSTATE_MODE' ] dtrain = lgb.Dataset(X, y, categorical_feature=categorical_feature) yhat, imp, ret = ex.stacking(X, y, param, 9999, esr=50, seed=SEED, categorical_feature=categorical_feature) imp.to_csv(f'LOG/imp_{__file__}.csv', index=False) #============================================================================== utils.end(__file__)