import matplotlib.pyplot as plt import pandas as pd import matplotlib as mpl from os import path from itertools import product from lib.categorical import violinplot # Style palette = ['#80e050', '#755575'] volume_path = path.abspath('data/volumes.csv') df = pd.read_csv(volume_path) df.loc[df['Processing'] == 'Unprocessed', 'Template'] = '' ax = violinplot( x="Processing", y='Volume Change Factor', data=df.loc[df['Processing'] != 'Unprocessed'], hue="Template", saturation=1, split=True, inner='quartile', palette=palette, scale='area', dodge=False, #inner_linewidth=1.0, linewidth=mpl.rcParams['grid.linewidth'], linecolor='w', )
import matplotlib as mpl from os import path from itertools import product from lib.categorical import violinplot # Style palette = ['#80e050', '#755575'] data_path = path.abspath('data/functional_significance.csv') df = pd.read_csv(data_path) #df = df.loc[~df['Subject'].isin([4003,4006,4013])] df.loc[df['Processing'] == 'Unprocessed', 'Template'] = '' #df = df.loc[df['Contrast']=='CBV'] ax = violinplot( x="Processing", y='Mean Significance', data=df, hue="Template", saturation=1, split=True, inner='quartile', palette=palette, scale='area', dodge=False, inner_linewidth=1.0, linewidth=mpl.rcParams['grid.linewidth'], linecolor='w', #bw=0.2, )
palette = ['#80e050', '#755575'] v_path = 'data/volume.csv' v = pd.read_csv(path.abspath(v_path)) df_path = 'data/smoothness.csv' df = pd.read_csv(path.abspath(df_path)) df = df[df['Processing'] != 'Unprocessed'] df = df[df['Template'] != 'Unprocessed'] #df.loc[df['Processing']=='Legacy','Smoothness Conservation Factor'] = df.loc[df['Processing']=='Legacy','Smoothness Conservation Factor']/10 #df[r'$\mathsf{log_{10}(Smoothness\,Change\,Factor)}$'] = np.log10(df['Smoothness Conservation Factor']) ax = violinplot( x="Processing", #y=r'$\mathsf{log_{10}(Smoothness\,Change\,Factor)}$', #y='Smoothness Conservation Factor', y='Smoothness Conservation Factor', #y='Smoothness', data=df, hue="Template", saturation=1, split=True, inner='quartile', palette=palette, scale='area', dodge=False, inner_linewidth=1.0, linewidth=mpl.rcParams['grid.linewidth'], linecolor='w', )
from os import path from itertools import product from lib.categorical import violinplot # Style palette = ['#ffb66d', '#009093'] data_path = path.abspath('data/functional_t.csv') df = pd.read_csv(data_path) df = df.loc[df['Processing'] != 'Unprocessed'] df = df.loc[((df['Processing'] == 'Legacy') & (df['Template'] == 'Legacy')) | ((df['Processing'] == 'Generic') & (df['Template'] == 'Generic'))] df.loc[df['Processing'] == 'Unprocessed', 'Template'] = '' ax = violinplot( x="Processing", y='Mean DR t', data=df, hue="Contrast", saturation=1, split=True, inner='quartile', palette=palette, scale='area', dodge=False, inner_linewidth=1.0, linewidth=mpl.rcParams['grid.linewidth'], linecolor='w', )
from os import path import matplotlib as mpl import pandas as pd from lib.categorical import violinplot volume_path = path.abspath('data/volume.csv') df = pd.read_csv(volume_path) df = df.loc[df['Processing'] != 'Unprocessed'] df = df.loc[((df['Processing'] == 'Masked') | (df['Processing'] == 'Generic'))] df.loc[df['Processing'] == 'Unprocessed'] = '' ax = violinplot( x='Contrast', y='Abs(1 - Vcf)', data=df, hue="Processing", saturation=1, split=True, inner='quartile', palette='muted', scale='area', dodge=False, inner_linewidth=1.0, linewidth=mpl.rcParams['grid.linewidth'], linecolor='w', )