示例#1
0
    def get_single_item(self, index):
        start_index, end_index = self.vid_indices[index]

        with h5py.File(self.h5_file, 'r') as db:
            self.db = db

            kp_2d = self.db['joints2D'][start_index:end_index + 1]
            kp_2d = convert_kps(kp_2d, src='insta', dst='spin')
            kp_2d_tensor = np.ones((self.seqlen, 49, 3), dtype=np.float16)


            input = torch.from_numpy(self.db['features'][start_index:end_index+1]).float()

            vid_name = self.db['vid_name'][start_index:end_index + 1]
            frame_id = self.db['frame_id'][start_index:end_index + 1].astype(str)
            instance_id = np.array([v.decode('ascii') + f for v, f in zip(vid_name, frame_id)])

        for idx in range(self.seqlen):
            kp_2d[idx,:,:2] = normalize_2d_kp(kp_2d[idx,:,:2], 224)
            kp_2d_tensor[idx] = kp_2d[idx]

        target = {
            'features': input,
            'kp_2d': torch.from_numpy(kp_2d_tensor).float(), # 2D keypoints transformed according to bbox cropping
            # 'instance_id': instance_id
        }

        return target
示例#2
0
def temporal_simplify(pred_verts, pred_cam, pred_pose, pred_betas,
                      pred_joints3d, norm_joints2d, device, args):
    if args.run_smplify and args.tracking_method == 'pose':
        norm_joints2d = np.concatenate(norm_joints2d, axis=0)
        norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
        norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)
        print('pred_verts is ', pred_verts)
        # Run Temporal SMPLify
        update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
        new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
         pred_rotmat=torch.cat(pred_pose, dim=0),
         pred_betas=torch.cat(pred_betas, dim=0),
         pred_cam=torch.cat(pred_cam, dim=0),
         j2d=norm_joints2d,
         device=device,
         batch_size=norm_joints2d.shape[0],
         pose2aa=False,
        )

        pred_verts[0][update] = new_opt_vertices[update].to(device)
        pred_cam[0][update] = new_opt_cam[update].to(device)
        pred_pose[0][update] = new_opt_pose[update].to(device)
        pred_betas[0][update] = new_opt_betas[update].to(device)
        pred_joints3d[0][update] = new_opt_joints3d[update].to(device)
        pred_verts[0] = pred_verts[0].cpu()
        pred_cam[0] = pred_cam[0].cpu()
        pred_pose[0] = pred_pose[0].cpu()
        pred_betas[0] = pred_betas[0].cpu()
        pred_joints3d[0] = pred_joints3d[0].cpu()

    elif args.run_smplify and args.tracking_method == 'bbox':
        print(
            '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
        )
        print('[WARNING] Continuing without running Temporal SMPLify!..')

    return pred_verts, pred_cam, pred_pose, pred_betas, pred_joints3d, norm_joints2d
示例#3
0
def main(args):
    torch.cuda.set_device(args.gpu_id)
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    print(f'Loading video list {args.video_list}')
    video_list = [l.strip() for l in open(args.video_list, 'r').readlines()]
    if len(video_list) < 1:
        print('No files were found in video list')
        return

    print('Loading VIBE model')
    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load VIBE pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    num_videos = len(video_list)
    print(f'Processing {num_videos} videos.')
    for video_idx, video_file in enumerate(video_list, start=1):
        if not osp.isfile(video_file):
            print(f'Input video \"{video_file}\" does not exist! Moving on to next file.')
            continue

        filename = osp.splitext(osp.basename(video_file))[0]
        output_path = osp.join(args.output_folder, filename)
        os.makedirs(output_path, exist_ok=True)

        image_folder, num_frames, img_shape = video_to_images(video_file, return_info=True)

        print(f'[{video_idx}/{num_videos}] Processing {num_frames} frames')
        orig_height, orig_width = img_shape[:2]

        # ========= Run tracking ========= #
        bbox_scale = 1.1
        if args.tracking_method == 'pose':
            if not osp.isabs(video_file):
                video_file = osp.join(os.getcwd(), video_file)
            tracking_results = run_posetracker(video_file, staf_folder=args.staf_dir, display=args.display)
        else:
            # run multi object tracker
            mot = MPT(
                device=device,
                batch_size=args.tracker_batch_size,
                display=args.display,
                detector_type=args.detector,
                output_format='dict',
                yolo_img_size=args.yolo_img_size,
            )
            tracking_results = mot(image_folder)

        # remove tracklets if num_frames is less than MIN_NUM_FRAMES
        for person_id in list(tracking_results.keys()):
            if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
                del tracking_results[person_id]

        # ========= Run VIBE on each person ========= #
        print(f'Running VIBE on each tracklet...')
        vibe_results = {}
        for person_id in tqdm(list(tracking_results.keys())):
            bboxes = joints2d = None

            if args.tracking_method == 'bbox':
                bboxes = tracking_results[person_id]['bbox']
            elif args.tracking_method == 'pose':
                joints2d = tracking_results[person_id]['joints2d']

            frames = tracking_results[person_id]['frames']

            dataset = Inference(
                image_folder=image_folder,
                frames=frames,
                bboxes=bboxes,
                joints2d=joints2d,
                scale=bbox_scale,
            )

            bboxes = dataset.bboxes
            frames = dataset.frames
            has_keypoints = True if joints2d is not None else False

            dataloader = DataLoader(dataset, batch_size=args.vibe_batch_size, num_workers=16)

            with torch.no_grad():

                pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

                for batch in dataloader:
                    if has_keypoints:
                        batch, nj2d = batch
                        norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                    batch = batch.unsqueeze(0)
                    batch = batch.to(device)

                    batch_size, seqlen = batch.shape[:2]
                    output = model(batch)[-1]

                    pred_cam.append(output['theta'][:, :, :3].reshape(batch_size * seqlen, -1))
                    pred_verts.append(output['verts'].reshape(batch_size * seqlen, -1, 3))
                    pred_pose.append(output['theta'][:,:,3:75].reshape(batch_size * seqlen, -1))
                    pred_betas.append(output['theta'][:, :,75:].reshape(batch_size * seqlen, -1))
                    pred_joints3d.append(output['kp_3d'].reshape(batch_size * seqlen, -1, 3))


                pred_cam = torch.cat(pred_cam, dim=0)
                pred_verts = torch.cat(pred_verts, dim=0)
                pred_pose = torch.cat(pred_pose, dim=0)
                pred_betas = torch.cat(pred_betas, dim=0)
                pred_joints3d = torch.cat(pred_joints3d, dim=0)

                del batch

            # ========= [Optional] run Temporal SMPLify to refine the results ========= #
            if args.run_smplify and args.tracking_method == 'pose':
                norm_joints2d = np.concatenate(norm_joints2d, axis=0)
                norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
                norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

                # Run Temporal SMPLify
                update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
                new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                    pred_rotmat=pred_pose,
                    pred_betas=pred_betas,
                    pred_cam=pred_cam,
                    j2d=norm_joints2d,
                    device=device,
                    batch_size=norm_joints2d.shape[0],
                    pose2aa=False,
                )

                # update the parameters after refinement
                print(f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}')
                pred_verts = pred_verts.cpu()
                pred_cam = pred_cam.cpu()
                pred_pose = pred_pose.cpu()
                pred_betas = pred_betas.cpu()
                pred_joints3d = pred_joints3d.cpu()
                pred_verts[update] = new_opt_vertices[update]
                pred_cam[update] = new_opt_cam[update]
                pred_pose[update] = new_opt_pose[update]
                pred_betas[update] = new_opt_betas[update]
                pred_joints3d[update] = new_opt_joints3d[update]

            elif args.run_smplify and args.tracking_method == 'bbox':
                print('[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!')
                print('[WARNING] Continuing without running Temporal SMPLify!..')

            # ========= Save results to a pickle file ========= #
            pred_cam = pred_cam.cpu().numpy()
            pred_verts = pred_verts.cpu().numpy()
            pred_pose = pred_pose.cpu().numpy()
            pred_betas = pred_betas.cpu().numpy()
            pred_joints3d = pred_joints3d.cpu().numpy()

            orig_cam = convert_crop_cam_to_orig_img(
                cam=pred_cam,
                bbox=bboxes,
                img_width=orig_width,
                img_height=orig_height
            )

            output_dict = {
                'pred_cam': pred_cam,
                'orig_cam': orig_cam,
                'verts': pred_verts,
                'pose': pred_pose,
                'betas': pred_betas,
                'joints3d': pred_joints3d,
                'joints2d': joints2d,
                'bboxes': bboxes,
                'frame_ids': frames,
            }

            vibe_results[person_id] = output_dict

        # Clean-up the temporal folder

        # Save the outputs to joblib pkl file. File is loaded through joblib.load(pkl_path)
        output_pkl_path = osp.join(args.output_folder, f'{filename}.pkl')
        print(f'Saving output results to \"{output_pkl_path}\".')
        joblib.dump(vibe_results, output_pkl_path)
        if not args.no_render:
            # ========= Render results as a single video ========= #
            renderer = Renderer(resolution=(orig_width, orig_height), orig_img=True, wireframe=args.wireframe)

            output_img_folder = f'{image_folder}_output'
            os.makedirs(output_img_folder, exist_ok=True)

            print(f'Rendering output video, writing frames to {output_img_folder}')

            # prepare results for rendering
            frame_results = prepare_rendering_results(vibe_results, num_frames)
            mesh_color = {k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0) for k in vibe_results.keys()}

            image_file_names = sorted([
                os.path.join(image_folder, x)
                for x in os.listdir(image_folder)
                if x.endswith('.png') or x.endswith('.jpg')
            ])

            for frame_idx in tqdm(range(len(image_file_names))):
                img_fname = image_file_names[frame_idx]
                img = cv2.imread(img_fname)

                if args.sideview:
                    side_img = np.zeros_like(img)

                for person_id, person_data in frame_results[frame_idx].items():
                    frame_verts = person_data['verts']
                    frame_cam = person_data['cam']

                    mc = mesh_color[person_id]

                    mesh_filename = None

                    if args.save_obj:
                        mesh_folder = os.path.join(output_path, 'meshes', f'{person_id:04d}')
                        os.makedirs(mesh_folder, exist_ok=True)
                        mesh_filename = os.path.join(mesh_folder, f'{frame_idx:06d}.obj')

                    img = renderer.render(
                        img,
                        frame_verts,
                        cam=frame_cam,
                        color=mc,
                        mesh_filename=mesh_filename,
                    )

                    if args.sideview:
                        side_img = renderer.render(
                            side_img,
                            frame_verts,
                            cam=frame_cam,
                            color=mc,
                            angle=270,
                            axis=[0,1,0],
                        )

                if args.sideview:
                    img = np.concatenate([img, side_img], axis=1)

                cv2.imwrite(os.path.join(output_img_folder, f'{frame_idx:06d}.png'), img)

                if args.display:
                    cv2.imshow('Video', img)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break

            if args.display:
                cv2.destroyAllWindows()

            # ========= Save rendered video ========= #
            vid_name = os.path.basename(video_file)
            save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
            save_name = os.path.join(output_path, save_name)
            print(f'Saving result video to {save_name}')
            images_to_video(img_folder=output_img_folder, output_vid_file=save_name)
            
            shutil.rmtree(output_img_folder)

    # Clean-up after processing
    del model
    
    
    shutil.rmtree(image_folder)

    print('================= END =================')
示例#4
0
def read_data_train(dataset_path, debug=False):
    h, w = 2048, 2048
    dataset = {
        'vid_name': [],
        'frame_id': [],
        'joints3D': [],
        'joints2D': [],
        'bbox': [],
        'img_name': [],
        'features': [],
    }

    model = spin.get_pretrained_hmr()

    # training data
    user_list = range(1, 9)
    seq_list = range(1, 3)
    vid_list = list(range(3)) + list(range(4, 9))

    # product = product(user_list, seq_list, vid_list)
    # user_i, seq_i, vid_i = product[process_id]

    for user_i in user_list:
        for seq_i in seq_list:
            seq_path = os.path.join(dataset_path, 'S' + str(user_i),
                                    'Seq' + str(seq_i))
            # mat file with annotations
            annot_file = os.path.join(seq_path, 'annot.mat')
            annot2 = sio.loadmat(annot_file)['annot2']
            annot3 = sio.loadmat(annot_file)['annot3']
            # calibration file and camera parameters
            for j, vid_i in enumerate(vid_list):
                # image folder
                imgs_path = os.path.join(seq_path, 'video_' + str(vid_i))
                # per frame
                pattern = os.path.join(imgs_path, '*.jpg')
                img_list = sorted(glob.glob(pattern))
                vid_used_frames = []
                vid_used_joints = []
                vid_used_bbox = []
                vid_segments = []
                vid_uniq_id = "subj" + str(user_i) + '_seq' + str(
                    seq_i) + "_vid" + str(vid_i) + "_seg0"
                for i, img_i in tqdm_enumerate(img_list):

                    # for each image we store the relevant annotations
                    img_name = img_i.split('/')[-1]
                    joints_2d_raw = np.reshape(annot2[vid_i][0][i], (1, 28, 2))
                    joints_2d_raw = np.append(joints_2d_raw,
                                              np.ones((1, 28, 1)),
                                              axis=2)
                    joints_2d = convert_kps(joints_2d_raw, "mpii3d",
                                            "spin").reshape((-1, 3))

                    # visualize = True
                    # if visualize == True and i == 500:
                    #     import matplotlib.pyplot as plt
                    #
                    #     frame = cv2.cvtColor(cv2.imread(img_i), cv2.COLOR_BGR2RGB)
                    #
                    #     for k in range(49):
                    #         kp = joints_2d[k]
                    #
                    #         frame = cv2.circle(
                    #             frame.copy(),
                    #             (int(kp[0]), int(kp[1])),
                    #             thickness=3,
                    #             color=(255, 0, 0),
                    #             radius=5,
                    #         )
                    #
                    #         cv2.putText(frame, f'{k}', (int(kp[0]), int(kp[1]) + 1), cv2.FONT_HERSHEY_SIMPLEX, 1.5,
                    #                     (0, 255, 0),
                    #                     thickness=3)
                    #
                    #     plt.imshow(frame)
                    #     plt.show()

                    joints_3d_raw = np.reshape(annot3[vid_i][0][i],
                                               (1, 28, 3)) / 1000
                    joints_3d = convert_kps(joints_3d_raw, "mpii3d",
                                            "spin").reshape((-1, 3))

                    bbox = get_bbox_from_kp2d(
                        joints_2d[~np.all(joints_2d == 0, axis=1)]).reshape(4)

                    joints_3d = joints_3d - joints_3d[39]  # 4 is the root

                    # check that all joints are visible
                    x_in = np.logical_and(joints_2d[:, 0] < w,
                                          joints_2d[:, 0] >= 0)
                    y_in = np.logical_and(joints_2d[:, 1] < h,
                                          joints_2d[:, 1] >= 0)
                    ok_pts = np.logical_and(x_in, y_in)
                    if np.sum(ok_pts) < joints_2d.shape[0]:
                        vid_uniq_id = "_".join(vid_uniq_id.split("_")[:-1])+ "_seg" +\
                                          str(int(dataset['vid_name'][-1].split("_")[-1][3:])+1)
                        continue

                    dataset['vid_name'].append(vid_uniq_id)
                    dataset['frame_id'].append(img_name.split(".")[0])
                    dataset['img_name'].append(img_i)
                    dataset['joints2D'].append(joints_2d)
                    dataset['joints3D'].append(joints_3d)
                    dataset['bbox'].append(bbox)
                    vid_segments.append(vid_uniq_id)
                    vid_used_frames.append(img_i)
                    vid_used_joints.append(joints_2d)
                    vid_used_bbox.append(bbox)

                vid_segments = np.array(vid_segments)
                ids = np.zeros((len(set(vid_segments)) + 1))
                ids[-1] = len(vid_used_frames) + 1
                if (np.where(
                        vid_segments[:-1] != vid_segments[1:])[0]).size != 0:
                    ids[1:-1] = (np.where(
                        vid_segments[:-1] != vid_segments[1:])[0]) + 1

                # for i in tqdm(range(len(set(vid_segments)))):
                #     features = extract_features(model, np.array(vid_used_frames)[int(ids[i]):int(ids[i+1])],
                #                                 vid_used_bbox[int(ids[i]):int((ids[i+1]))],
                #                                 kp_2d=np.array(vid_used_joints)[int(ids[i]):int(ids[i+1])],
                #                                 dataset='spin', debug=False)
                #     dataset['features'].append(features)

    for k in dataset.keys():
        dataset[k] = np.array(dataset[k])
    # dataset['features'] = np.concatenate(dataset['features'])

    return dataset
示例#5
0
def read_test_data(dataset_path):

    dataset = {
        'vid_name': [],
        'frame_id': [],
        'joints3D': [],
        'joints2D': [],
        'bbox': [],
        'img_name': [],
        'features': [],
        "valid_i": []
    }

    model = spin.get_pretrained_hmr()

    user_list = range(1, 7)

    for user_i in user_list:
        print('Subject', user_i)
        seq_path = os.path.join(dataset_path, 'mpi_inf_3dhp_test_set',
                                'TS' + str(user_i))
        # mat file with annotations
        annot_file = os.path.join(seq_path, 'annot_data.mat')
        mat_as_h5 = h5py.File(annot_file, 'r')
        annot2 = np.array(mat_as_h5['annot2'])
        annot3 = np.array(mat_as_h5['univ_annot3'])
        valid = np.array(mat_as_h5['valid_frame'])

        vid_used_frames = []
        vid_used_joints = []
        vid_used_bbox = []
        vid_segments = []
        vid_uniq_id = "subj" + str(user_i) + "_seg0"

        for frame_i, valid_i in tqdm(enumerate(valid)):

            img_i = os.path.join('mpi_inf_3dhp_test_set', 'TS' + str(user_i),
                                 'imageSequence',
                                 'img_' + str(frame_i + 1).zfill(6) + '.jpg')

            joints_2d_raw = np.expand_dims(annot2[frame_i, 0, :, :], axis=0)
            joints_2d_raw = np.append(joints_2d_raw,
                                      np.ones((1, 17, 1)),
                                      axis=2)

            joints_2d = convert_kps(joints_2d_raw,
                                    src="mpii3d_test",
                                    dst="spin").reshape((-1, 3))

            # visualize = True
            # if visualize == True:
            #     import matplotlib.pyplot as plt
            #
            #     frame = cv2.cvtColor(cv2.imread(os.path.join(dataset_path, img_i)), cv2.COLOR_BGR2RGB)
            #
            #     for k in range(49):
            #         kp = joints_2d[k]
            #
            #         frame = cv2.circle(
            #             frame.copy(),
            #             (int(kp[0]), int(kp[1])),
            #             thickness=3,
            #             color=(255, 0, 0),
            #             radius=5,
            #         )
            #
            #         cv2.putText(frame, f'{k}', (int(kp[0]), int(kp[1]) + 1), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 255, 0),
            #                     thickness=3)
            #
            #     plt.imshow(frame)
            #     plt.show()

            joints_3d_raw = np.reshape(annot3[frame_i, 0, :, :],
                                       (1, 17, 3)) / 1000
            joints_3d = convert_kps(joints_3d_raw, "mpii3d_test",
                                    "spin").reshape((-1, 3))
            joints_3d = joints_3d - joints_3d[
                39]  # substract pelvis zero is the root for test

            bbox = get_bbox_from_kp2d(
                joints_2d[~np.all(joints_2d == 0, axis=1)]).reshape(4)

            # check that all joints are visible
            img_file = os.path.join(dataset_path, img_i)
            I = cv2.imread(img_file)
            h, w, _ = I.shape
            x_in = np.logical_and(joints_2d[:, 0] < w, joints_2d[:, 0] >= 0)
            y_in = np.logical_and(joints_2d[:, 1] < h, joints_2d[:, 1] >= 0)
            ok_pts = np.logical_and(x_in, y_in)

            if np.sum(ok_pts) < joints_2d.shape[0]:
                vid_uniq_id = "_".join(vid_uniq_id.split("_")[:-1]) + "_seg" + \
                              str(int(dataset['vid_name'][-1].split("_")[-1][3:]) + 1)
                continue

            dataset['vid_name'].append(vid_uniq_id)
            dataset['frame_id'].append(img_file.split("/")[-1].split(".")[0])
            dataset['img_name'].append(img_file)
            dataset['joints2D'].append(joints_2d)
            dataset['joints3D'].append(joints_3d)
            dataset['bbox'].append(bbox)
            dataset['valid_i'].append(valid_i)

            vid_segments.append(vid_uniq_id)
            vid_used_frames.append(img_file)
            vid_used_joints.append(joints_2d)
            vid_used_bbox.append(bbox)

        vid_segments = np.array(vid_segments)
        ids = np.zeros((len(set(vid_segments)) + 1))
        ids[-1] = len(vid_used_frames) + 1
        if (np.where(vid_segments[:-1] != vid_segments[1:])[0]).size != 0:
            ids[1:-1] = (np.where(
                vid_segments[:-1] != vid_segments[1:])[0]) + 1

        # for i in tqdm(range(len(set(vid_segments)))):
        #     features = extract_features(model, np.array(vid_used_frames)[int(ids[i]):int(ids[i + 1])],
        #                                 vid_used_bbox[int(ids[i]):int(ids[i + 1])],
        #                                 kp_2d=np.array(vid_used_joints)[int(ids[i]):int(ids[i + 1])],
        #                                 dataset='spin', debug=False)
        #     dataset['features'].append(features)

    for k in dataset.keys():
        dataset[k] = np.array(dataset[k])
    # dataset['features'] = np.concatenate(dataset['features'])

    return dataset
示例#6
0
def main(args):
    if args.device == 'cpu':
        device = torch.device('cpu')
        print('Running on CPU')
    else:
        device = torch.device('cuda')
        print('Running on GPU')

    if args.vid_file:
        video_file = args.vid_file
        if not os.path.isfile(video_file):
            exit(f'Input video \"{video_file}\" does not exist!')
    else:
        image_file = args.img_file
        if not os.path.isfile(image_file):
            exit(f'Input video \"{image_file}\" does not exist!')

    output_path = os.path.join(
        args.output_folder,
        os.path.basename(video_file).replace('.mp4', ''))
    # output_path = os.path.join(args.output_folder, os.path.basename(video_file).split('.')[0])
    os.makedirs(output_path, exist_ok=True)

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # resize video if too big
    # ffmpeg -i input.avi -filter:v scale=720:-1 -c:a copy output.mkv

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    import pdb
    pdb.set_trace

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=True)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():
            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        vibe_results[person_id] = output_dict

    del model

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.'
    )

    print(
        f'Saving output results to \"{os.path.join(output_path, "vibe_output.pkl")}\".'
    )

    joblib.dump(vibe_results, os.path.join(output_path, "vibe_output.pkl"))

    if not args.no_render:
        # ========= Render results as a single video ========= #
        renderer = Renderer(resolution=(orig_width, orig_height),
                            orig_img=True,
                            wireframe=args.wireframe)

        output_img_folder = f'{image_folder}_images'
        os.makedirs(output_img_folder, exist_ok=True)

        print(f'Rendering output video, writing frames to {output_img_folder}')

        output_pose_folder = f'{image_folder}_poses'
        os.makedirs(output_pose_folder, exist_ok=True)

        print(f'Saving poses to {output_pose_folder}')

        # prepare results for rendering

        from numpy import save
        save(f'{os.path.basename(video_file)}_poses.npy',
             vibe_results[1]['joints3d'][:, :25, :])
        print('Saving numpy poses file to' + f'{video_file}_poses.npy')

        frame_results = prepare_rendering_results(
            vibe_results,
            num_frames)  # returns a list of dicts (one dict for each person)
        mesh_color = {
            k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0)
            for k in vibe_results.keys()
        }

        image_file_names = sorted([
            os.path.join(image_folder, x) for x in os.listdir(image_folder)
            if x.endswith('.png') or x.endswith('.jpg')
        ])

        for frame_idx in tqdm(range(len(image_file_names))):
            img_fname = image_file_names[frame_idx]
            img = cv2.imread(img_fname)

            if args.sideview:
                side_img = np.zeros_like(img)

            for person_id, person_data in frame_results[frame_idx].items():
                frame_verts = person_data['verts']
                frame_cam = person_data['cam']
                frame_pose = person_data['joints3d'][:25]

                mc = mesh_color[person_id]

                mesh_filename = None

                if args.save_obj:
                    mesh_folder = os.path.join(output_path, 'meshes',
                                               f'{person_id:04d}')
                    os.makedirs(mesh_folder, exist_ok=True)
                    mesh_filename = os.path.join(mesh_folder,
                                                 f'{frame_idx:06d}.obj')

                # bgr image (opencv format)
                img = renderer.render(
                    img,
                    frame_verts,
                    cam=frame_cam,
                    color=mc,
                    mesh_filename=mesh_filename,
                )

                # import pdb; pdb.set_trace()
                # Create a 3D projection and save as img
                # pose is mirrored
                # plot_skeleton(output_pose_folder, frame_idx, frame_pose)

                if args.sideview:
                    side_img = renderer.render(
                        side_img,
                        frame_verts,
                        cam=frame_cam,
                        color=mc,
                        angle=270,
                        axis=[0, 1, 0],
                    )

            if args.sideview:
                img = np.concatenate([img, side_img], axis=1)

            # concatenate pose img with this image before writing
            cv2.imwrite(
                os.path.join(output_img_folder, f'{frame_idx:06d}.png'), img)

            if args.display:
                cv2.imshow('Video', img)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

        if args.display:
            cv2.destroyAllWindows()

        # ========= Save rendered video ========= #
        vid_name = os.path.basename(video_file)
        save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
        save_name = os.path.join(output_path, save_name)
        print(f'Saving result video to {save_name}')
        images_to_video(img_folder=output_img_folder,
                        output_vid_file=save_name)
        # shutil.rmtree(output_img_folder)

    shutil.rmtree(image_folder)
    print('================= END =================')
示例#7
0
def read_data(folder, set):
    dataset = {
        'img_name': [],
        'joints2D': [],
        'bbox': [],
        'vid_name': [],
        'features': [],
    }

    model = spin.get_pretrained_hmr()

    file_names = glob.glob(
        osp.join(folder, 'posetrack_data/annotations/', f'{set}/*.json'))
    file_names = sorted(file_names)
    nn_corrupted = 0
    tot_frames = 0
    min_frame_number = 8

    for fid, fname in tqdm_enumerate(file_names):
        if fname == osp.join(folder,
                             'annotations/train/021133_mpii_train.json'):
            continue

        with open(fname, 'r') as entry:
            anns = json.load(entry)
        # num_frames = anns['images'][0]['nframes']
        anns['images'] = [
            item for item in anns['images'] if item['is_labeled']
        ]
        num_frames = len(anns['images'])
        frame2imgname = dict()
        for el in anns['images']:
            frame2imgname[el['frame_id']] = el['file_name']

        num_people = -1
        for x in anns['annotations']:
            if num_people < x['track_id']:
                num_people = x['track_id']
        num_people += 1
        posetrack_joints = get_posetrack_original_kp_names()
        idxs = [
            anns['categories'][0]['keypoints'].index(h)
            for h in posetrack_joints
            if h in anns['categories'][0]['keypoints']
        ]
        for x in anns['annotations']:
            kps = np.array(x['keypoints']).reshape((17, 3))
            kps = kps[idxs, :]
            x['keypoints'] = list(kps.flatten())

        tot_frames += num_people * num_frames
        for p_id in range(num_people):

            annot_pid = [(item['keypoints'], item['bbox'], item['image_id'])
                         for item in anns['annotations']
                         if item['track_id'] == p_id
                         and not (np.count_nonzero(item['keypoints']) == 0)]

            if len(annot_pid) < min_frame_number:
                nn_corrupted += len(annot_pid)
                continue

            bbox = np.zeros((len(annot_pid), 4))
            # perm_idxs = get_perm_idxs('posetrack', 'common')
            kp_2d = np.zeros((len(annot_pid), len(annot_pid[0][0]) // 3, 3))
            img_paths = np.zeros((len(annot_pid)))

            for i, (key2djnts, bbox_p, image_id) in enumerate(annot_pid):

                if (bbox_p[2] == 0 or bbox_p[3] == 0):
                    nn_corrupted += 1
                    continue

                img_paths[i] = image_id
                key2djnts[2::3] = len(key2djnts[2::3]) * [1]

                kp_2d[i, :] = np.array(key2djnts).reshape(
                    int(len(key2djnts) / 3), 3)  # [perm_idxs, :]
                for kp_loc in kp_2d[i, :]:
                    if kp_loc[0] == 0 and kp_loc[1] == 0:
                        kp_loc[2] = 0

                x_tl = bbox_p[0]
                y_tl = bbox_p[1]
                w = bbox_p[2]
                h = bbox_p[3]
                bbox_p[0] = x_tl + w / 2
                bbox_p[1] = y_tl + h / 2
                #

                w = h = np.where(w / h > 1, w, h)
                w = h = h * 0.8
                bbox_p[2] = w
                bbox_p[3] = h
                bbox[i, :] = bbox_p

            img_paths = list(img_paths)
            img_paths = [
                osp.join(folder, frame2imgname[item]) if item != 0 else 0
                for item in img_paths
            ]

            bbx_idxs = []
            for bbx_id, bbx in enumerate(bbox):
                if np.count_nonzero(bbx) == 0:
                    bbx_idxs += [bbx_id]

            kp_2d = np.delete(kp_2d, bbx_idxs, 0)
            img_paths = np.delete(np.array(img_paths), bbx_idxs, 0)
            bbox = np.delete(bbox, np.where(~bbox.any(axis=1))[0], axis=0)

            # Convert to common 2d keypoint format
            if bbox.size == 0 or bbox.shape[0] < min_frame_number:
                nn_corrupted += 1
                continue

            kp_2d = convert_kps(kp_2d, src='posetrack', dst='spin')

            dataset['vid_name'].append(
                np.array([f'{fname}_{p_id}'] * img_paths.shape[0]))
            dataset['img_name'].append(np.array(img_paths))
            dataset['joints2D'].append(kp_2d)
            dataset['bbox'].append(np.array(bbox))

            # compute_features
            features = extract_features(
                model,
                np.array(img_paths),
                bbox,
                kp_2d=kp_2d,
                dataset='spin',
                debug=False,
            )

            assert kp_2d.shape[0] == img_paths.shape[0] == bbox.shape[0]

            dataset['features'].append(features)

    print(nn_corrupted, tot_frames)
    for k in dataset.keys():
        dataset[k] = np.array(dataset[k])

    for k in dataset.keys():
        dataset[k] = np.concatenate(dataset[k])

    for k, v in dataset.items():
        print(k, v.shape)

    return dataset
示例#8
0
    def get_single_item(self, index):
        start_index, end_index = self.vid_indices[index]

        kp_2d = self.db['joints2D'][start_index:end_index + 1]
        if self.dataset_name != 'posetrack':
            kp_2d = convert_kps(kp_2d, src=self.dataset_name, dst='spin')
        kp_2d_tensor = np.ones((self.seqlen, 49, 3), dtype=np.float16)

        bbox = self.db['bbox'][start_index:end_index + 1]

        input = torch.from_numpy(self.db['features'][start_index:end_index +
                                                     1]).float()

        for idx in range(self.seqlen):
            # crop image and transform 2d keypoints
            kp_2d[idx, :, :2], trans = transfrom_keypoints(
                kp_2d=kp_2d[idx, :, :2],
                center_x=bbox[idx, 0],
                center_y=bbox[idx, 1],
                width=bbox[idx, 2],
                height=bbox[idx, 3],
                patch_width=224,
                patch_height=224,
                do_augment=False,
            )

            kp_2d[idx, :, :2] = normalize_2d_kp(kp_2d[idx, :, :2], 224)
            kp_2d_tensor[idx] = kp_2d[idx]

        vid_name = self.db['vid_name'][start_index:end_index + 1]
        frame_id = self.db['img_name'][start_index:end_index + 1].astype(str)
        instance_id = np.array([v + f for v, f in zip(vid_name, frame_id)])

        target = {
            'features': input,
            'kp_2d': torch.from_numpy(kp_2d_tensor).float(
            ),  # 2D keypoints transformed according to bbox cropping
            # 'instance_id': instance_id,
        }

        if self.debug:
            from lib.data_utils.img_utils import get_single_image_crop

            vid_name = self.db['vid_name'][start_index]

            if self.dataset_name == 'pennaction':
                vid_folder = "frames"
                vid_name = vid_name.split('/')[-1].split('.')[0]
                img_id = "img_name"
            elif self.dataset_name == 'posetrack':
                vid_folder = osp.join('images', vid_name.split('/')[-2])
                vid_name = vid_name.split('/')[-1].split('.')[0]
                img_id = "img_name"
            else:
                vid_name = '_'.join(vid_name.split('_')[:-1])
                vid_folder = 'imageFiles'
                img_id = 'frame_id'
            f = osp.join(self.folder, vid_folder, vid_name)
            video_file_list = [
                osp.join(f, x) for x in sorted(os.listdir(f))
                if x.endswith('.jpg')
            ]
            frame_idxs = self.db[img_id][start_index:end_index + 1]
            if self.dataset_name == 'pennaction' or self.dataset_name == 'posetrack':
                video = frame_idxs
            else:
                video = [video_file_list[i] for i in frame_idxs]

            video = torch.cat([
                get_single_image_crop(image, bbox).unsqueeze(0)
                for image, bbox in zip(video, bbox)
            ],
                              dim=0)

            target['video'] = video

        return target
示例#9
0
def main(args):
    torch.cuda.set_device(args.gpu_id)
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    print(f'Loading video list {args.video_list}')
    video_list = [l.strip() for l in open(args.video_list, 'r').readlines()]
    if len(video_list) < 1:
        print('No files were found in video list')
        return

    print('Loading VIBE model')
    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load VIBE pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    num_videos = len(video_list)
    print(f'Processing {num_videos} videos.')
    for video_idx, video_file in enumerate(video_list, start=1):
        if not osp.isfile(video_file):
            print(
                f'Input video \"{video_file}\" does not exist! Moving on to next file.'
            )
            continue

        filename = osp.splitext(osp.basename(video_file))[0]
        output_path = osp.join(args.output_folder, filename)
        os.makedirs(output_path, exist_ok=True)

        image_folder, num_frames, img_shape = video_to_images(video_file,
                                                              return_info=True)

        print(f'[{video_idx}/{num_videos}] Processing {num_frames} frames')
        orig_height, orig_width = img_shape[:2]

        # ========= Run tracking ========= #
        bbox_scale = 1.1
        if args.tracking_method == 'pose':
            if not osp.isabs(video_file):
                video_file = osp.join(os.getcwd(), video_file)
            tracking_results = run_posetracker(video_file,
                                               staf_folder=args.staf_dir,
                                               display=args.display)
        else:
            # run multi object tracker
            mot = MPT(
                device=device,
                batch_size=args.tracker_batch_size,
                display=args.display,
                detector_type=args.detector,
                output_format='dict',
                yolo_img_size=args.yolo_img_size,
            )
            tracking_results = mot(image_folder)

        # remove tracklets if num_frames is less than MIN_NUM_FRAMES
        for person_id in list(tracking_results.keys()):
            if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
                del tracking_results[person_id]

        # ========= Run VIBE on each person ========= #
        print(f'Running VIBE on each tracklet...')
        vibe_results = {}
        for person_id in tqdm(list(tracking_results.keys())):
            bboxes = joints2d = None

            if args.tracking_method == 'bbox':
                bboxes = tracking_results[person_id]['bbox']
            elif args.tracking_method == 'pose':
                joints2d = tracking_results[person_id]['joints2d']

            frames = tracking_results[person_id]['frames']

            dataset = Inference(
                image_folder=image_folder,
                frames=frames,
                bboxes=bboxes,
                joints2d=joints2d,
                scale=bbox_scale,
            )

            bboxes = dataset.bboxes
            frames = dataset.frames
            has_keypoints = True if joints2d is not None else False

            dataloader = DataLoader(dataset,
                                    batch_size=args.vibe_batch_size,
                                    num_workers=16)

            with torch.no_grad():

                pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

                for batch in dataloader:
                    if has_keypoints:
                        batch, nj2d = batch
                        norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                    batch = batch.unsqueeze(0)
                    batch = batch.to(device)

                    batch_size, seqlen = batch.shape[:2]
                    output = model(batch)[-1]

                    pred_cam.append(output['theta'][:, :, :3].reshape(
                        batch_size * seqlen, -1))
                    pred_verts.append(output['verts'].reshape(
                        batch_size * seqlen, -1, 3))
                    pred_pose.append(output['theta'][:, :, 3:75].reshape(
                        batch_size * seqlen, -1))
                    pred_betas.append(output['theta'][:, :, 75:].reshape(
                        batch_size * seqlen, -1))
                    pred_joints3d.append(output['kp_3d'].reshape(
                        batch_size * seqlen, -1, 3))

                pred_cam = torch.cat(pred_cam, dim=0)
                pred_verts = torch.cat(pred_verts, dim=0)
                pred_pose = torch.cat(pred_pose, dim=0)
                pred_betas = torch.cat(pred_betas, dim=0)
                pred_joints3d = torch.cat(pred_joints3d, dim=0)

                del batch

            # ========= [Optional] run Temporal SMPLify to refine the results ========= #
            if args.run_smplify and args.tracking_method == 'pose':
                norm_joints2d = np.concatenate(norm_joints2d, axis=0)
                norm_joints2d = convert_kps(norm_joints2d,
                                            src='staf',
                                            dst='spin')
                norm_joints2d = torch.from_numpy(norm_joints2d).float().to(
                    device)

                # Run Temporal SMPLify
                update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
                new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                    pred_rotmat=pred_pose,
                    pred_betas=pred_betas,
                    pred_cam=pred_cam,
                    j2d=norm_joints2d,
                    device=device,
                    batch_size=norm_joints2d.shape[0],
                    pose2aa=False,
                )

                # update the parameters after refinement
                print(
                    f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
                )
                pred_verts = pred_verts.cpu()
                pred_cam = pred_cam.cpu()
                pred_pose = pred_pose.cpu()
                pred_betas = pred_betas.cpu()
                pred_joints3d = pred_joints3d.cpu()
                pred_verts[update] = new_opt_vertices[update]
                pred_cam[update] = new_opt_cam[update]
                pred_pose[update] = new_opt_pose[update]
                pred_betas[update] = new_opt_betas[update]
                pred_joints3d[update] = new_opt_joints3d[update]

            elif args.run_smplify and args.tracking_method == 'bbox':
                print(
                    '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
                )
                print(
                    '[WARNING] Continuing without running Temporal SMPLify!..')

            # ========= Save results to a pickle file ========= #
            pred_cam = pred_cam.cpu().numpy()
            pred_verts = pred_verts.cpu().numpy()
            pred_pose = pred_pose.cpu().numpy()
            pred_betas = pred_betas.cpu().numpy()
            pred_joints3d = pred_joints3d.cpu().numpy()

            orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                    bbox=bboxes,
                                                    img_width=orig_width,
                                                    img_height=orig_height)

            output_dict = {
                'pred_cam': pred_cam,
                'orig_cam': orig_cam,
                'verts': pred_verts,
                'pose': pred_pose,
                'betas': pred_betas,
                'joints3d': pred_joints3d,
                'joints2d': joints2d,
                'bboxes': bboxes,
                'frame_ids': frames,
            }

            vibe_results[person_id] = output_dict

        # Clean-up the temporal folder
        shutil.rmtree(image_folder)

        # Save the outputs to joblib pkl file. File is loaded through joblib.load(pkl_path)
        output_pkl_path = osp.join(args.output_folder, f'{filename}.pkl')
        print(f'Saving output results to \"{output_pkl_path}\".')
        joblib.dump(vibe_results, output_pkl_path)

    # Clean-up after processing
    del model

    print('================= END =================')
示例#10
0
    def get_single_item(self, index):
        start_index, end_index = self.vid_indices[index]

        is_train = self.set == 'train'

        if self.dataset_name == '3dpw':
            kp_2d = convert_kps(self.db['joints2D'][start_index:end_index + 1], src='common', dst='spin')
            kp_3d = self.db['joints3D'][start_index:end_index + 1]
        elif self.dataset_name == 'mpii3d':
            kp_2d = self.db['joints2D'][start_index:end_index + 1]
            if is_train:
                kp_3d = self.db['joints3D'][start_index:end_index + 1]
            else:
                kp_3d = convert_kps(self.db['joints3D'][start_index:end_index + 1], src='spin', dst='common')
        elif self.dataset_name == 'h36m':
            kp_2d = self.db['joints2D'][start_index:end_index + 1]
            if is_train:
                kp_3d = self.db['joints3D'][start_index:end_index + 1]
            else:
                kp_3d = convert_kps(self.db['joints3D'][start_index:end_index + 1], src='spin', dst='common')

        kp_2d_tensor = np.ones((self.seqlen, 49, 3), dtype=np.float16)
        nj = 14 if not is_train else 49
        kp_3d_tensor = np.zeros((self.seqlen, nj, 3), dtype=np.float16)


        if self.dataset_name == '3dpw':
            pose  = self.db['pose'][start_index:end_index+1]
            shape = self.db['shape'][start_index:end_index+1]
            w_smpl = torch.ones(self.seqlen).float()
            w_3d = torch.ones(self.seqlen).float()
        elif self.dataset_name == 'h36m':
            if not is_train:
                pose = np.zeros((kp_2d.shape[0], 72))
                shape = np.zeros((kp_2d.shape[0], 10))
                w_smpl = torch.zeros(self.seqlen).float()
                w_3d = torch.ones(self.seqlen).float()
            else:
                pose = self.db['pose'][start_index:end_index + 1]
                shape = self.db['shape'][start_index:end_index + 1]
                w_smpl = torch.ones(self.seqlen).float()
                w_3d = torch.ones(self.seqlen).float()
        elif self.dataset_name == 'mpii3d':
            pose = np.zeros((kp_2d.shape[0], 72))
            shape = np.zeros((kp_2d.shape[0], 10))
            w_smpl = torch.zeros(self.seqlen).float()
            w_3d = torch.ones(self.seqlen).float()

        bbox = self.db['bbox'][start_index:end_index + 1]
        bbox_orig = bbox
        bbox_orig[:, 2] = bbox[:, 2] * 0.5
        input = torch.from_numpy(self.db['features'][start_index:end_index+1]).float()

        theta_tensor = np.zeros((self.seqlen, 85), dtype=np.float16)

        for idx in range(self.seqlen):
            # crop image and transform 2d keypoints
            kp_2d[idx,:,:2], trans = transfrom_keypoints(
                kp_2d=kp_2d[idx,:,:2],
                center_x=bbox[idx,0],
                center_y=bbox[idx,1],
                width=bbox[idx,2],
                height=bbox[idx,3],
                patch_width=224,
                patch_height=224,
                do_augment=False,
            )

            kp_2d[idx,:,:2] = normalize_2d_kp(kp_2d[idx,:,:2], 224)

            # theta shape (85,)
            theta = np.concatenate((np.array([1., 0., 0.]), pose[idx], shape[idx]), axis=0)

            kp_2d_tensor[idx] = kp_2d[idx]
            theta_tensor[idx] = theta
            kp_3d_tensor[idx] = kp_3d[idx]

        target = {
            'features': input,
            'theta': torch.from_numpy(theta_tensor).float(), # camera, pose and shape
            'kp_2d': torch.from_numpy(kp_2d_tensor).float(), # 2D keypoints transformed according to bbox cropping
            'kp_3d': torch.from_numpy(kp_3d_tensor).float(), # 3D keypoints
            'w_smpl': w_smpl,
            'w_3d': w_3d,
        }

        if self.dataset_name == 'mpii3d' and not is_train:
            target['valid'] = self.db['valid_i'][start_index:end_index+1]

        if self.dataset_name == '3dpw' and not is_train:
            vn = self.db['vid_name'][start_index:end_index + 1]
            fi = self.db['frame_id'][start_index:end_index + 1]
            target['instance_id'] = [f'{v}/{f}'for v,f in zip(vn,fi)]



        # if self.dataset_name == '3dpw' and not self.is_train:
            # target['imgname'] = self.db['img_name'][start_index:end_index+1].tolist()
            # target['imgname'] = np.array(target['imgname'])
            # print(target['imgname'].dtype)
            # target['center'] = self.db['bbox'][start_index:end_index+1, :2]
            # target['valid'] = torch.from_numpy(self.db['valid'][start_index:end_index+1])

        #if self.debug:
        from lib.data_utils.img_utils import get_single_image_crop

        if self.dataset_name == 'mpii3d':
            video_names = self.db['img_name'][start_index:end_index+1]
            # print(video)
        elif self.dataset_name == 'h36m':
            video_names = self.db['img_name'][start_index:end_index + 1]
        else:
            vid_name = self.db['vid_name'][start_index]
            vid_name = '_'.join(vid_name.split('_')[:-1])
            f = osp.join(self.folder, 'imageFiles', vid_name)
            video_file_list = [osp.join(f, x) for x in sorted(os.listdir(f)) if x.endswith('.jpg')]
            frame_idxs = self.db['frame_id'][start_index:end_index + 1]
            # print(f, frame_idxs)
            video_names = [video_file_list[i] for i in frame_idxs]

        count = 0
        for image_name, tmp_bbox_orig in zip(video_names, bbox_orig):
            image_yolo, image_big, bbox_orig_yolo, bbox_orig_big = get_single_image_full(image_name, tmp_bbox_orig)
            if count == 0:
                bbox_orig_big_all = [bbox_orig_big]
                bbox_orig_yolo_all = [bbox_orig_yolo]
                video_big = image_big.unsqueeze(0)
                video_yolo = image_yolo.unsqueeze(0)
            else:
                bbox_orig_big_all = np.append(bbox_orig_big_all, [bbox_orig_big], axis=0)
                bbox_orig_yolo_all = np.append(bbox_orig_yolo_all, [bbox_orig_yolo], axis=0)
                video_big = torch.cat([video_big, image_big.unsqueeze(0)])
                video_yolo = torch.cat([video_yolo, image_yolo.unsqueeze(0)])
            count += 1
        target['video_big'] = video_big
        target['video_yolo'] = video_yolo
        target['bbox_orig_yolo'] = bbox_orig_yolo_all
        target['bbox_orig_big'] = bbox_orig_big_all

        return target
示例#11
0
    def get_single_item(self, index):
        curr_key = self.data_keys[index]
        curr_length = self.vid_lengths[curr_key]
        vid_start = self.vid_start[curr_key]

        start_index = (torch.randint(curr_length - self.seqlen,
                                     (1, )) + vid_start if
                       curr_length - self.seqlen != 0 else vid_start).long()
        end_index = (start_index + self.seqlen - 1).long()

        is_train = self.set == 'train'

        if self.dataset_name == '3dpw' or self.dataset_name == 'amass_rend_take3':
            kp_2d = convert_kps(self.db['joints2D'][start_index:end_index + 1],
                                src='common',
                                dst='spin')
            kp_3d = self.db['joints3D'][start_index:end_index + 1]
        elif self.dataset_name == 'mpii3d':
            kp_2d = self.db['joints2D'][start_index:end_index + 1]
            if is_train:
                kp_3d = self.db['joints3D'][start_index:end_index + 1]
            else:
                kp_3d = convert_kps(self.db['joints3D'][start_index:end_index +
                                                        1],
                                    src='spin',
                                    dst='common')
        elif self.dataset_name == 'h36m':
            kp_2d = self.db['joints2D'][start_index:end_index + 1]
            if is_train:
                kp_3d = self.db['joints3D'][start_index:end_index + 1]
            else:
                kp_3d = convert_kps(self.db['joints3D'][start_index:end_index +
                                                        1],
                                    src='spin',
                                    dst='common')

        kp_2d_tensor = np.ones((self.seqlen, 49, 3), dtype=np.float16)
        nj = 14 if not is_train else 49
        kp_3d_tensor = np.zeros((self.seqlen, nj, 3), dtype=np.float16)

        if self.dataset_name == '3dpw' or self.dataset_name == 'amass_rend_take3':
            pose = self.db['pose'][start_index:end_index + 1]
            shape = self.db['shape'][start_index:end_index + 1]
            w_smpl = torch.ones(self.seqlen).float()
            w_3d = torch.ones(self.seqlen).float()
        elif self.dataset_name == 'h36m':
            if not is_train:
                pose = np.zeros((kp_2d.shape[0], 72))
                shape = np.zeros((kp_2d.shape[0], 10))
                w_smpl = torch.zeros(self.seqlen).float()
                w_3d = torch.ones(self.seqlen).float()
            else:
                pose = self.db['pose'][start_index:end_index + 1]
                shape = self.db['shape'][start_index:end_index + 1]
                w_smpl = torch.ones(self.seqlen).float()
                w_3d = torch.ones(self.seqlen).float()
        elif self.dataset_name == 'mpii3d':
            pose = np.zeros((kp_2d.shape[0], 72))
            shape = np.zeros((kp_2d.shape[0], 10))
            w_smpl = torch.zeros(self.seqlen).float()
            w_3d = torch.ones(self.seqlen).float()

        bbox = self.db['bbox'][start_index:end_index + 1]
        input = torch.from_numpy(self.db['features'][start_index:end_index +
                                                     1]).float()

        theta_tensor = np.zeros((self.seqlen, 85), dtype=np.float16)

        for idx in range(self.seqlen):
            # crop image and transform 2d keypoints
            kp_2d[idx, :, :2], trans = transfrom_keypoints(
                kp_2d=kp_2d[idx, :, :2],
                center_x=bbox[idx, 0],
                center_y=bbox[idx, 1],
                width=bbox[idx, 2],
                height=bbox[idx, 3],
                patch_width=224,
                patch_height=224,
                do_augment=False,
            )

            kp_2d[idx, :, :2] = normalize_2d_kp(kp_2d[idx, :, :2], 224)

            # theta shape (85,)
            theta = np.concatenate(
                (np.array([1., 0., 0.]), pose[idx], shape[idx]), axis=0)

            kp_2d_tensor[idx] = kp_2d[idx]
            theta_tensor[idx] = theta
            kp_3d_tensor[idx] = kp_3d[idx]

        target = {
            'features': input,
            'theta':
            torch.from_numpy(theta_tensor).float(),  # camera, pose and shape
            'kp_2d': torch.from_numpy(kp_2d_tensor).float(
            ),  # 2D keypoints transformed according to bbox cropping
            'kp_3d': torch.from_numpy(kp_3d_tensor).float(),  # 3D keypoints
            'w_smpl': w_smpl,
            'w_3d': w_3d,
        }

        if self.dataset_name == 'mpii3d' and not is_train:
            target['valid'] = self.db['valid_i'][start_index:end_index + 1]

        if (self.dataset_name == '3dpw'
                or self.dataset_name == 'amass_rend_take3') and not is_train:
            vn = self.db['vid_name'][start_index:end_index + 1]
            fi = self.db['frame_id'][start_index:end_index + 1]
            target['instance_id'] = [f'{v}/{f}' for v, f in zip(vn, fi)]

        # if self.dataset_name == '3dpw' and not self.is_train:
        # target['imgname'] = self.db['img_name'][start_index:end_index+1].tolist()
        # target['imgname'] = np.array(target['imgname'])
        # print(target['imgname'].dtype)
        # target['center'] = self.db['bbox'][start_index:end_index+1, :2]
        # target['valid'] = torch.from_numpy(self.db['valid'][start_index:end_index+1])

        if self.debug:
            from lib.data_utils.img_utils import get_single_image_crop

            if self.dataset_name == 'mpii3d':
                video = self.db['img_name'][start_index:end_index + 1]
                # print(video)
            elif self.dataset_name == 'h36m':
                video = self.db['img_name'][start_index:end_index + 1]
            else:
                vid_name = self.db['vid_name'][start_index]
                vid_name = '_'.join(vid_name.split('_')[:-1])
                f = osp.join(self.folder, 'imageFiles', vid_name)
                video_file_list = [
                    osp.join(f, x) for x in sorted(os.listdir(f))
                    if x.endswith('.jpg')
                ]
                frame_idxs = self.db['frame_id'][start_index:end_index + 1]
                # print(f, frame_idxs)
                video = [video_file_list[i] for i in frame_idxs]

            video = torch.cat([
                get_single_image_crop(image, bbox).unsqueeze(0)
                for image, bbox in zip(video, bbox)
            ],
                              dim=0)

            target['video'] = video

        return target
示例#12
0
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    dict = {
        'bridge': 1,
        'childs': 2,
        'downwarddog': 3,
        'mountain': 4,
        'plank': 5,
        'seatedforwardbend': 6,
        'tree': 7,
        'trianglepose': 8,
        'warrior1': 9,
        'warrior2': 10
    }
    dir_path = '/home/ubuntu/PoseEstimation/VIBE/InputData/input_test_set/'
    output_folder = '/home/ubuntu/PoseEstimation/VIBE/OutputData/test_set/'

    joints3D_csv = open('output_joints3d_dog.csv', 'a')
    pose_csv = open('output_pose.csv_dog', 'a')

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    video_file = '/home/ubuntu/PoseEstimation/VIBE/DogVideo.mp4'
    video_label = dict['bridge']
    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        # Runs 1 Euro Filter to smooth out the results
        if args.smooth:
            min_cutoff = args.smooth_min_cutoff  # 0.004
            beta = args.smooth_beta  # 1.5
            print(
                f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}'
            )
            pred_verts, pred_pose, pred_joints3d = smooth_pose(
                pred_pose, pred_betas, min_cutoff=min_cutoff, beta=beta)

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        for i in range(len(output_dict['joints3d'])):
            if (i % 5 == 0):
                flat_arr = output_dict['joints3d'][i].flatten()
                len_N = len(flat_arr)
                np.savetxt(joints3D_csv, [np.append(flat_arr, [video_label])],
                           delimiter=',',
                           fmt=' '.join(['%f'] * len_N + ['%i']))

        for i in range(len(output_dict['pose'])):
            if (i % 5 == 0):
                pose_arr = output_dict['pose'][i].flatten()
                len_M = len(pose_arr)
                np.savetxt(pose_csv, [np.append(pose_arr, [video_label])],
                           delimiter=',',
                           fmt=' '.join(['%f'] * len_M + ['%i']))

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.'
    )
示例#13
0
def main(args):
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    video_file = args.vid_file

    # ========= [Optional] download the youtube video ========= #
    if video_file.startswith('https://www.youtube.com'):
        print(f'Donwloading YouTube video \"{video_file}\"')
        video_file = download_youtube_clip(video_file, '/tmp')

        if video_file is None:
            exit('Youtube url is not valid!')

        print(f'YouTube Video has been downloaded to {video_file}...')

    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    output_path = os.path.join(args.output_folder, os.path.basename(video_file).replace('.mp4', ''))
    os.makedirs(output_path, exist_ok=True)

    image_folder, num_frames, img_shape = video_to_images(video_file, return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file, staf_folder=args.staf_dir, display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None     

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        # reduce the num of worker if you encountered the error:  DLL load failed: The paging file is too small for this operation to complete
        dataloader = DataLoader(dataset, batch_size=args.vibe_batch_size, num_workers=8)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:,:,3:75].reshape(batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :,75:].reshape(batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(batch_size * seqlen, -1, 3))


            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}')
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print('[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!')
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        orig_cam = convert_crop_cam_to_orig_img(
            cam=pred_cam,
            bbox=bboxes,
            img_width=orig_width,
            img_height=orig_height
        )

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        vibe_results[person_id] = output_dict

    del model

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(f'Total time spent: {total_time:.2f} seconds (including model loading time).')
    print(f'Total FPS (including model loading time): {num_frames / total_time:.2f}.')

    print(f'Saving output results to \"{os.path.join(output_path, "vibe_output.pkl")}\".')

    joblib.dump(vibe_results, os.path.join(output_path, "vibe_output.pkl"))

    if not args.no_render:
        # ========= Render results as a single video ========= #
        renderer = Renderer(resolution=(orig_width, orig_height), orig_img=True, wireframe=args.wireframe)

        output_img_folder = f'{image_folder}_output'
        os.makedirs(output_img_folder, exist_ok=True)

        print(f'Rendering output video, writing frames to {output_img_folder}')

        # prepare results for rendering
        frame_results = prepare_rendering_results(vibe_results, num_frames)
        mesh_color = {k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0) for k in vibe_results.keys()}

        image_file_names = sorted([
            os.path.join(image_folder, x)
            for x in os.listdir(image_folder)
            if x.endswith('.png') or x.endswith('.jpg')
        ])

        for frame_idx in tqdm(range(len(image_file_names))):
            img_fname = image_file_names[frame_idx]
            img = cv2.imread(img_fname)

            if args.sideview:
                side_img = np.zeros_like(img)

            for person_id, person_data in frame_results[frame_idx].items():
                frame_verts = person_data['verts']
                frame_cam = person_data['cam']

                mc = mesh_color[person_id]

                mesh_filename = None

                if args.save_obj:
                    mesh_folder = os.path.join(output_path, 'meshes', f'{person_id:04d}')
                    os.makedirs(mesh_folder, exist_ok=True)
                    mesh_filename = os.path.join(mesh_folder, f'{frame_idx:06d}.obj')

                img = renderer.render(
                    img,
                    frame_verts,
                    cam=frame_cam,
                    color=mc,
                    mesh_filename=mesh_filename,
                )

                if args.sideview:
                    side_img = renderer.render(
                        side_img,
                        frame_verts,
                        cam=frame_cam,
                        color=mc,
                        angle=270,
                        axis=[0,1,0],
                    )

            if args.sideview:
                img = np.concatenate([img, side_img], axis=1)

            font = cv2.FONT_HERSHEY_SIMPLEX
            x = 10 #position of text
            y = 20 #position of text
            cv2.putText(img, str(frame_idx), (x,y), font ,0.55,(0,255,0),1)
            cv2.imwrite(os.path.join(output_img_folder, f'{frame_idx:06d}.png'), img)

            if args.display:
                cv2.imshow('Video', img)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

        if args.display:
            cv2.destroyAllWindows()

        # ========= Save rendered video ========= #
        vid_name = os.path.basename(video_file)
        save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
        save_name = os.path.join(output_path, save_name)
        print(f'Saving result video to {save_name}')
        images_to_video(img_folder=output_img_folder, output_vid_file=save_name)
        shutil.rmtree(output_img_folder)

    shutil.rmtree(image_folder)

    # generate and save the joints csv file for animating avatars later
    output = joblib.load(os.path.join(output_path, "vibe_output.pkl"))
    for i in output.keys():
        print('Track ids:', i , end='\n\n')

    num_ppl = len(output.keys())

    print('VIBE output file content:', end='\n\n')

    vid_name = os.path.basename(video_file)
    vibe_result_folder = output_path
    # output the pose result as csv
    # format: v_personId_numFrames
    pose_filename_list = []

    for i in output.keys():
      pose_filename = vibe_result_folder + "/" + vid_name + "_"+ str(i) + "_" +  str(output[i]['pose'].shape[0]) + ".csv"
      pose_filename_list.append(pose_filename)
      field_names = []
      for idx in range(73): # 72 -> 73 (+ frame_id at 0)
        field_names.append(str(idx))
        
      with open(pose_filename, 'w', newline='') as file:
        writer = csv.writer(file)
        writer.writerow(field_names)
        for frame_id in range(len(output[i]['pose'])):
          output_data = [output[i]['frame_ids'][frame_id]]
          output_data.extend(output[i]['pose'][frame_id])
          #print(output_data)
          writer.writerow(output_data) 


    print('================= END =================')
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

    map_vals = {
        'bridge': 1,
        'childs': 2,
        'downwarddog': 3,
        'mountain': 4,
        'plank': 5,
        'seatedforwardbend': 6,
        'tree': 7,
        'trianglepose': 8,
        'warrior1': 9,
        'warrior2': 10
    }

    inverse_map = {
        1: 'bridge',
        2: 'childs',
        3: 'downwarddog',
        4: 'mountain',
        5: 'plank',
        6: 'seatedforwardbend',
        7: 'tree',
        8: 'trianglepose',
        9: 'warrior1',
        10: 'warrior2'
    }

    video_file = args.vid_file
    # ========= [Optional] download the youtube video ========= #
    if video_file.startswith('https://www.youtube.com'):
        print(f'Donwloading YouTube video \"{video_file}\"')
        video_file = download_youtube_clip(video_file, '/tmp')

        if video_file is None:
            exit('Youtube url is not valid!')

        print(f'YouTube Video has been downloaded to {video_file}...')

    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    dir_path = '/home/ubuntu/PoseEstimation/VIBE/InputData/input_test_set/'
    output_folder = '/home/ubuntu/PoseEstimation/VIBE/OutputData/'

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load Classification Model ========= #
    classification_model = pickle.load(
        open('view_classification_model.pkl', 'rb'))

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    #print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    #print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Run VIBE on each person ========= #
    #print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in list(tracking_results.keys()):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        # Runs 1 Euro Filter to smooth out the results
        if args.smooth:
            min_cutoff = args.smooth_min_cutoff  # 0.004
            beta = args.smooth_beta  # 1.5
            print(
                f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}'
            )
            pred_verts, pred_pose, pred_joints3d = smooth_pose(
                pred_pose, pred_betas, min_cutoff=min_cutoff, beta=beta)

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }
        # ========= Extract 3D joint feature for each frame ========= #
        list_val = []
        for i in range(len(output_dict['joints3d'])):
            list_val.append(output_dict['joints3d'][i].flatten().reshape(
                1, -1))

        input_df = pd.DataFrame(np.concatenate(list_val))
        input_df = input_df.round(2)
        predicted_classes = classification_model.predict_classes(input_df)
        output_df = pd.DataFrame(predicted_classes)
        # ========= Printing all possible poses detected for the video ========= #
        total_frames = len(output_df)
        print(
            '\nPrinting probabilities for yoga poses predicted in different frames.'
        )
        for i, v in output_df.value_counts().items():
            val = round((v / total_frames) * 100, 2)
            print('Probability of the yoga pose being ' +
                  inverse_map[i[0]].capitalize() + " is: " + str(val))
        print('\nThe yoga pose in the given video is: ' +
              inverse_map[output_df[0].value_counts().idxmax()].capitalize())
示例#15
0
def run_vibe(video_file, args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    # Make output dirs
    output_path = os.path.join(
        args.output_folder, os.path.basename(video_file).replace('.mp4', ''))
    os.makedirs(output_path, exist_ok=True)

    # Convert video to images
    image_folder, num_frames, img_shape = video_to_images(
        video_file, return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    if not os.path.isabs(video_file):
        video_file = os.path.join(os.getcwd(), video_file)

    tracking_results = run_posetracker(
        video_file, staf_folder=args.staf_dir, display=args.display, smoothen=args.smoothen, smoothen_method=args.smoothen_method)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):

        joints2d = tracking_results[person_id]['joints2d']
        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=None,
            joints2d=joints2d
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(
            dataset, batch_size=args.vibe_batch_size, num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [
            ], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        norm_joints2d = np.concatenate(norm_joints2d, axis=0)
        norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
        norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

        # Run Temporal SMPLify
        update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

        # update the parameters after refinement
        print(
            f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}')
        pred_verts = pred_verts.cpu()
        pred_cam = pred_cam.cpu()
        pred_pose = pred_pose.cpu()
        pred_betas = pred_betas.cpu()
        pred_joints3d = pred_joints3d.cpu()
        pred_verts[update] = new_opt_vertices[update]
        pred_cam[update] = new_opt_cam[update]
        pred_pose[update] = new_opt_pose[update]
        pred_betas[update] = new_opt_betas[update]
        pred_joints3d[update] = new_opt_joints3d[update]


        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        orig_cam = convert_crop_cam_to_orig_img(
            cam=pred_cam,
            bbox=bboxes,
            img_width=orig_width,
            img_height=orig_height
        )

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        vibe_results[person_id] = output_dict

    del model

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).')
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.')

    print(
        f'Saving output results to \"{os.path.join(output_path, "vibe_output.pkl")}\".')

    # joblib.dump(vibe_results, os.path.join(output_path, "vibe_output.pkl"))
    for person in vibe_results.keys():
        dump_path = os.path.join(output_path, "vibe_output_%s.pkl" % person)
        os.makedirs(os.path.dirname(dump_path), exist_ok=True)
        pickle.dump(vibe_results[person], open(dump_path, 'wb'))

    # if not args.no_render:
    #     # ========= Render results as a single video ========= #
    #     renderer = Renderer(resolution=(orig_width, orig_height),
    #                         orig_img=True, wireframe=args.wireframe)

    #     output_img_folder = f'{image_folder}_output'
    #     os.makedirs(output_img_folder, exist_ok=True)

    #     print(f'Rendering output video, writing frames to {output_img_folder}')

    #     # prepare results for rendering
    #     frame_results = prepare_rendering_results(vibe_results, num_frames)
    #     mesh_color = {k: colorsys.hsv_to_rgb(
    #         np.random.rand(), 0.5, 1.0) for k in vibe_results.keys()}

    #     image_file_names = sorted([
    #         os.path.join(image_folder, x)
    #         for x in os.listdir(image_folder)
    #         if x.endswith('.png') or x.endswith('.jpg')
    #     ])

    #     for frame_idx in tqdm(range(len(image_file_names))):
    #         img_fname = image_file_names[frame_idx]
    #         img = cv2.imread(img_fname)

    #         for person_id, person_data in frame_results[frame_idx].items():
    #             frame_verts = person_data['verts']
    #             frame_cam = person_data['cam']

    #             mc = mesh_color[person_id]

    #             mesh_filename = None

    #             img = renderer.render(
    #                 img,
    #                 frame_verts,
    #                 cam=frame_cam,
    #                 color=mc,
    #                 mesh_filename=mesh_filename,
    #             )

    #         cv2.imwrite(os.path.join(output_img_folder,
    #                                  f'{frame_idx:06d}.png'), img)

    #         if args.display:
    #             cv2.imshow('Video', img)
    #             if cv2.waitKey(1) & 0xFF == ord('q'):
    #                 break

    #     if args.display:
    #         cv2.destroyAllWindows()

    #     # ========= Save rendered video ========= #
    #     vid_name = os.path.basename(video_file)
    #     save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
    #     save_name = os.path.join(output_path, save_name)
    #     print(f'Saving result video to {save_name}')
    #     images_to_video(img_folder=output_img_folder,
    #                     output_vid_file=save_name)
    #     shutil.rmtree(output_img_folder)

    shutil.rmtree(image_folder)
    print('================= END =================')
示例#16
0
文件: demo.py 项目: yajurvbhatia/VIBE
def main(args):
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    video_file = args.vid_file

    # ========= [Optional] download the youtube video ========= #
    if video_file.startswith('https://www.youtube.com'):
        print(f'Donwloading YouTube video \"{video_file}\"')
        video_file = download_youtube_clip(video_file, '/tmp')

        if video_file is None:
            exit('Youtube url is not valid!')

        print(f'YouTube Video has been downloaded to {video_file}...')

    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    output_path = os.path.join(args.output_folder, os.path.basename(video_file).replace('.mp4', ''))
    os.makedirs(output_path, exist_ok=True)

    image_folder, num_frames, img_shape = video_to_images(video_file, return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file, staf_folder=args.staf_dir, display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset, batch_size=args.vibe_batch_size, num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, smpl_joints2d, norm_joints2d = [], [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:,:,3:75].reshape(batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :,75:].reshape(batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(batch_size * seqlen, -1, 3))
                smpl_joints2d.append(output['kp_2d']).reshape(batch_size * seqlen, -1, 2))


            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)
            smpl_joints2d = torch.cat(smpl_joints2d, dim=0)
            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )
示例#17
0
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    video_file = args.vid_file

    # ========= [Optional] download the youtube video ========= #
    if video_file.startswith('https://www.youtube.com'):
        print(f'Donwloading YouTube video \"{video_file}\"')
        video_file = download_youtube_clip(video_file, '/tmp')

        if video_file is None:
            exit('Youtube url is not valid!')

        print(f'YouTube Video has been downloaded to {video_file}...')

    if not os.path.isfile(video_file):
        exit(f'Input video \"{video_file}\" does not exist!')

    output_path = os.path.join(
        args.output_folder,
        os.path.basename(video_file).replace('.mp4', ''))
    os.makedirs(output_path, exist_ok=True)

    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f'Input video number of frames {num_frames}')
    orig_height, orig_width = img_shape[:2]

    total_time = time.time()

    # ========= Run tracking ========= #
    bbox_scale = 1.1
    if args.tracking_method == 'pose':
        if not os.path.isabs(video_file):
            video_file = os.path.join(os.getcwd(), video_file)
        tracking_results = run_posetracker(video_file,
                                           staf_folder=args.staf_dir,
                                           display=args.display)
    else:
        # run multi object tracker
        mot = MPT(
            device=device,
            batch_size=args.tracker_batch_size,
            display=args.display,
            detector_type=args.detector,
            output_format='dict',
            yolo_img_size=args.yolo_img_size,
        )
        tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    # ========= Run VIBE on each person ========= #
    print(f'Running VIBE on each tracklet...')
    vibe_time = time.time()
    vibe_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None

        if args.tracking_method == 'bbox':
            bboxes = tracking_results[person_id]['bbox']
        elif args.tracking_method == 'pose':
            joints2d = tracking_results[person_id]['joints2d']

        frames = tracking_results[person_id]['frames']

        dataset = Inference(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        dataloader = DataLoader(dataset,
                                batch_size=args.vibe_batch_size,
                                num_workers=16)

        with torch.no_grad():

            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for batch in dataloader:
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.unsqueeze(0)
                batch = batch.to(device)

                batch_size, seqlen = batch.shape[:2]
                output = model(batch)[-1]

                pred_cam.append(output['theta'][:, :, :3].reshape(
                    batch_size * seqlen, -1))
                pred_verts.append(output['verts'].reshape(
                    batch_size * seqlen, -1, 3))
                pred_pose.append(output['theta'][:, :, 3:75].reshape(
                    batch_size * seqlen, -1))
                pred_betas.append(output['theta'][:, :, 75:].reshape(
                    batch_size * seqlen, -1))
                pred_joints3d.append(output['kp_3d'].reshape(
                    batch_size * seqlen, -1, 3))

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= [Optional] run Temporal SMPLify to refine the results ========= #
        if args.run_smplify and args.tracking_method == 'pose':
            norm_joints2d = np.concatenate(norm_joints2d, axis=0)
            norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
            norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

            # Run Temporal SMPLify
            update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
            new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
                pred_rotmat=pred_pose,
                pred_betas=pred_betas,
                pred_cam=pred_cam,
                j2d=norm_joints2d,
                device=device,
                batch_size=norm_joints2d.shape[0],
                pose2aa=False,
            )

            # update the parameters after refinement
            print(
                f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
            )
            pred_verts = pred_verts.cpu()
            pred_cam = pred_cam.cpu()
            pred_pose = pred_pose.cpu()
            pred_betas = pred_betas.cpu()
            pred_joints3d = pred_joints3d.cpu()
            pred_verts[update] = new_opt_vertices[update]
            pred_cam[update] = new_opt_cam[update]
            pred_pose[update] = new_opt_pose[update]
            pred_betas[update] = new_opt_betas[update]
            pred_joints3d[update] = new_opt_joints3d[update]

        elif args.run_smplify and args.tracking_method == 'bbox':
            print(
                '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
            )
            print('[WARNING] Continuing without running Temporal SMPLify!..')

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        # Runs 1 Euro Filter to smooth out the results
        if args.smooth:
            min_cutoff = args.smooth_min_cutoff  # 0.004
            beta = args.smooth_beta  # 1.5
            print(
                f'Running smoothing on person {person_id}, min_cutoff: {min_cutoff}, beta: {beta}'
            )
            pred_verts, pred_pose, pred_joints3d = smooth_pose(
                pred_pose, pred_betas, min_cutoff=min_cutoff, beta=beta)

        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        vibe_results[person_id] = output_dict

    del model

    end = time.time()
    fps = num_frames / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.'
    )

    print(
        f'Saving output results to \"{os.path.join(output_path, "vibe_output.pkl")}\".'
    )

    joblib.dump(vibe_results, os.path.join(output_path, "vibe_output.pkl"))

    if not args.no_render:
        # ========= Render results as a single video ========= #
        renderer = Renderer(resolution=(orig_width, orig_height),
                            orig_img=True,
                            wireframe=args.wireframe)

        output_img_folder = f'{image_folder}_output'
        os.makedirs(output_img_folder, exist_ok=True)

        if args.joints3dview:
            output_img_raw_folder = f'{image_folder}_raw_output'
            os.makedirs(output_img_raw_folder, exist_ok=True)

            output_img_joints3d_folder = f'{image_folder}_joints3d_output'
            os.makedirs(output_img_joints3d_folder, exist_ok=True)

            output_img_mesh_folder = f'{image_folder}_mesh_output'
            os.makedirs(output_img_mesh_folder, exist_ok=True)

            output_img_meshside_folder = f'{image_folder}_meshside_output'
            os.makedirs(output_img_meshside_folder, exist_ok=True)

            output_img_all_folder = f'{image_folder}_all_output'
            os.makedirs(output_img_all_folder, exist_ok=True)

        print(f'Rendering output video, writing frames to {output_img_folder}')

        # prepare results for rendering
        frame_results = prepare_rendering_results(vibe_results, num_frames)
        mesh_color = {
            k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0)
            for k in vibe_results.keys()
        }

        image_file_names = sorted([
            os.path.join(image_folder, x) for x in os.listdir(image_folder)
            if x.endswith('.png') or x.endswith('.jpg')
        ])

        length_image_files = len(image_file_names)
        #length_image_files = 100
        for frame_idx in tqdm(range(length_image_files)):
            img_fname = image_file_names[frame_idx]
            img = cv2.imread(img_fname)

            if args.sideview:
                side_img = np.zeros_like(img)

            if args.joints3dview:
                img_raw = img.copy()
                img_joints3d = np.zeros_like(img)
                joints3d_list = []

            for person_id, person_data in frame_results[frame_idx].items():
                frame_verts = person_data['verts']
                frame_cam = person_data['cam']
                joints3d = person_data['joints3d']
                #print('frame_verts.shape = {}\nframe_cam.shape ={}\njoints3d.shape = {}'.format(
                #   frame_verts.shape, frame_cam.shape, joints3d.shape))
                mc = mesh_color[person_id]

                if args.joints3dview:
                    joints3d_list.append(joints3d)
                #    img_joints3d = render_joints3d(joints3d, img_raw.shape)

                mesh_filename = None

                if args.save_obj:
                    mesh_folder = os.path.join(output_path, 'meshes',
                                               f'{person_id:04d}')
                    os.makedirs(mesh_folder, exist_ok=True)
                    mesh_filename = os.path.join(mesh_folder,
                                                 f'{frame_idx:06d}.obj')

                img = renderer.render(
                    img,
                    frame_verts,
                    cam=frame_cam,
                    color=mc,
                    mesh_filename=mesh_filename,
                )

                if args.sideview:
                    side_img = renderer.render(
                        side_img,
                        frame_verts,
                        cam=frame_cam,
                        color=mc,
                        angle=270,
                        axis=[0, 1, 0],
                    )

            if args.sideview:
                img_mesh = img.copy()
                img = np.concatenate([img, side_img], axis=1)

            cv2.imwrite(
                os.path.join(output_img_folder, f'{frame_idx:06d}.png'), img)

            if args.joints3dview:
                #img_joints3d = np.zeros_like(img_raw)
                if len(joints3d_list) == 0:
                    img_joints3d = np.zeros_like(img_raw)
                else:
                    joints3d = np.concatenate(joints3d_list)
                    img_joints3d = render_joints3d(joints3d, img_raw.shape)

            if args.joints3dview:
                img_up = np.concatenate([img_raw, img_joints3d], axis=1)
                img_down = np.concatenate([img_mesh, side_img], axis=1)
                img_all = np.concatenate([img_up, img_down], axis=0)

                cv2.imwrite(
                    os.path.join(output_img_raw_folder,
                                 f'{frame_idx:06d}.png'), img_raw)
                cv2.imwrite(
                    os.path.join(output_img_joints3d_folder,
                                 f'{frame_idx:06d}.png'), img_joints3d)
                cv2.imwrite(
                    os.path.join(output_img_mesh_folder,
                                 f'{frame_idx:06d}.png'), img_mesh)
                cv2.imwrite(
                    os.path.join(output_img_meshside_folder,
                                 f'{frame_idx:06d}.png'), side_img)
                cv2.imwrite(
                    os.path.join(output_img_all_folder,
                                 f'{frame_idx:06d}.png'), img_all)

            if args.display:
                cv2.imshow('Video', img)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

        if args.display:
            cv2.destroyAllWindows()

        # ========= Save rendered video ========= #
        vid_name = os.path.basename(video_file)
        save_name = f'{vid_name.replace(".mp4", "")}_vibe_result.mp4'
        save_name = os.path.join(output_path, save_name)
        print(f'Saving result video to {save_name}')
        images_to_video(img_folder=output_img_folder,
                        output_vid_file=save_name)
        shutil.rmtree(output_img_folder)

        if args.joints3dview:
            '''
            save_name_raw = f'{vid_name.replace(".mp4", "")}_raw.mp4'
            save_name_raw = os.path.join(output_path, save_name_raw)
            images_to_video(img_folder=output_img_raw_folder, output_vid_file=save_name_raw)
            shutil.rmtree(output_img_raw_folder)

            save_name_joints3d = f'{vid_name.replace(".mp4", "")}_joints3d.mp4'
            save_name_joints3d = os.path.join(output_path, save_name_joints3d)
            images_to_video(img_folder=output_img_joints3d_folder, output_vid_file=save_name_joints3d)
            shutil.rmtree(output_img_joints3d_folder)

            save_name_mesh = f'{vid_name.replace(".mp4", "")}_mesh.mp4'
            save_name_mesh = os.path.join(output_path, save_name_mesh)
            images_to_video(img_folder=output_img_mesh_folder, output_vid_file=save_name_mesh)
            shutil.rmtree(output_img_mesh_folder)

            save_name_meshside = f'{vid_name.replace(".mp4", "")}_meshside.mp4'
            save_name_meshside = os.path.join(output_path, save_name_meshside)
            images_to_video(img_folder=output_img_meshside_folder, output_vid_file=save_name_meshside)
            shutil.rmtree(output_img_meshside_folder)
            '''
            save_name_all = f'{vid_name.replace(".mp4", "")}_all.mp4'
            save_name_all = os.path.join(output_path, save_name_all)
            images_to_video(img_folder=output_img_all_folder,
                            output_vid_file=save_name_all)
            shutil.rmtree(output_img_all_folder)

    shutil.rmtree(image_folder)
    print('================= END =================')
示例#18
0
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    # ========= Define VIBE model ========= #
    model = VIBE_Demo(
        seqlen=16,
        device=device,
        n_layers=2,
        hidden_size=1024,
        add_linear=True,
        use_residual=True,
    ).to(device)

    # ========= Load pretrained weights ========= #
    pretrained_file = download_ckpt(use_3dpw=False)
    ckpt = torch.load(pretrained_file, map_location=device)
    print(f'Performance of pretrained model on 3DPW: {ckpt["performance"]}')
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)
    model.eval()
    print(f'Loaded pretrained weights from \"{pretrained_file}\"')

    total_time = time.time()
    # ========= Run VIBE on crops ========= #
    print(f'Running VIBE on crops...')
    vibe_time = time.time()
    image_folder = args.input_folder

    dataset = InferenceFromCrops(image_folder=image_folder)
    orig_height = orig_width = 512

    dataloader = DataLoader(dataset,
                            batch_size=args.vibe_batch_size,
                            num_workers=0)

    with torch.no_grad():

        pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

        for batch_num, batch in enumerate(dataloader):
            print("BATCH:", batch_num)
            batch = batch.unsqueeze(0)
            batch = batch.to(device)

            batch_size, seqlen = batch.shape[:2]
            output = model(batch)[-1]

            pred_cam.append(output['theta'][:, :, :3].reshape(
                batch_size * seqlen, -1))
            pred_verts.append(output['verts'].reshape(batch_size * seqlen, -1,
                                                      3))
            pred_pose.append(output['theta'][:, :, 3:75].reshape(
                batch_size * seqlen, -1))
            pred_betas.append(output['theta'][:, :, 75:].reshape(
                batch_size * seqlen, -1))
            pred_joints3d.append(output['kp_3d'].reshape(
                batch_size * seqlen, -1, 3))

        pred_cam = torch.cat(pred_cam, dim=0)
        pred_verts = torch.cat(pred_verts, dim=0)
        pred_pose = torch.cat(pred_pose, dim=0)
        pred_betas = torch.cat(pred_betas, dim=0)
        pred_joints3d = torch.cat(pred_joints3d, dim=0)

        del batch

    # ========= [Optional] run Temporal SMPLify to refine the results ========= #
    if args.run_smplify and args.tracking_method == 'pose':
        norm_joints2d = np.concatenate(norm_joints2d, axis=0)
        norm_joints2d = convert_kps(norm_joints2d, src='staf', dst='spin')
        norm_joints2d = torch.from_numpy(norm_joints2d).float().to(device)

        # Run Temporal SMPLify
        update, new_opt_vertices, new_opt_cam, new_opt_pose, new_opt_betas, \
        new_opt_joints3d, new_opt_joint_loss, opt_joint_loss = smplify_runner(
            pred_rotmat=pred_pose,
            pred_betas=pred_betas,
            pred_cam=pred_cam,
            j2d=norm_joints2d,
            device=device,
            batch_size=norm_joints2d.shape[0],
            pose2aa=False,
        )

        # update the parameters after refinement
        print(
            f'Update ratio after Temporal SMPLify: {update.sum()} / {norm_joints2d.shape[0]}'
        )
        pred_verts = pred_verts.cpu()
        pred_cam = pred_cam.cpu()
        pred_pose = pred_pose.cpu()
        pred_betas = pred_betas.cpu()
        pred_joints3d = pred_joints3d.cpu()
        pred_verts[update] = new_opt_vertices[update]
        pred_cam[update] = new_opt_cam[update]
        pred_pose[update] = new_opt_pose[update]
        pred_betas[update] = new_opt_betas[update]
        pred_joints3d[update] = new_opt_joints3d[update]

    elif args.run_smplify and args.tracking_method == 'bbox':
        print(
            '[WARNING] You need to enable pose tracking to run Temporal SMPLify algorithm!'
        )
        print('[WARNING] Continuing without running Temporal SMPLify!..')

    # ========= Save results to a pickle file ========= #
    output_path = image_folder.replace('cropped_frames', 'vibe_results')
    os.makedirs(output_path, exist_ok=True)

    pred_cam = pred_cam.cpu().numpy()
    pred_verts = pred_verts.cpu().numpy()
    pred_pose = pred_pose.cpu().numpy()
    pred_betas = pred_betas.cpu().numpy()
    pred_joints3d = pred_joints3d.cpu().numpy()

    vibe_results = {
        'pred_cam': pred_cam,
        'verts': pred_verts,
        'pose': pred_pose,
        'betas': pred_betas,
        'joints3d': pred_joints3d,
    }

    del model
    end = time.time()
    fps = len(dataset) / (end - vibe_time)

    print(f'VIBE FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {len(dataset) / total_time:.2f}.'
    )

    print(
        f'Saving vibe results to \"{os.path.join(output_path, "vibe_results.pkl")}\".'
    )

    with open(os.path.join(output_path, "vibe_results.pkl"), 'wb') as f_save:
        pickle.dump(vibe_results, f_save)

    if not args.no_render:
        # ========= Render results as a single video ========= #
        renderer = Renderer(resolution=(orig_width, orig_height),
                            orig_img=True,
                            wireframe=args.wireframe)

        output_img_folder = os.path.join(output_path, 'vibe_images')
        os.makedirs(output_img_folder, exist_ok=True)

        print(f'Rendering output video, writing frames to {output_img_folder}')

        image_file_names = sorted([
            os.path.join(image_folder, x) for x in os.listdir(image_folder)
            if x.endswith('.png') or x.endswith('.jpg')
        ])

        for frame_idx in tqdm(range(len(image_file_names))):
            img_fname = image_file_names[frame_idx]
            img = cv2.imread(img_fname)

            frame_verts = vibe_results['verts'][frame_idx]
            frame_cam = vibe_results['pred_cam'][frame_idx]

            mesh_filename = None

            if args.save_obj:
                mesh_folder = os.path.join(output_path, 'vibe_meshes')
                os.makedirs(mesh_folder, exist_ok=True)
                mesh_filename = os.path.join(mesh_folder,
                                             f'{frame_idx:06d}.obj')

            rend_img = renderer.render(
                img,
                frame_verts,
                cam=frame_cam,
                mesh_filename=mesh_filename,
            )

            whole_img = rend_img

            if args.sideview:
                side_img_bg = np.zeros_like(img)
                side_rend_img90 = renderer.render(
                    side_img_bg,
                    frame_verts,
                    cam=frame_cam,
                    angle=90,
                    axis=[0, 1, 0],
                )
                side_rend_img270 = renderer.render(
                    side_img_bg,
                    frame_verts,
                    cam=frame_cam,
                    angle=270,
                    axis=[0, 1, 0],
                )
                if args.reposed_render:
                    smpl = SMPL('data/vibe_data', batch_size=1)
                    zero_pose = torch.from_numpy(
                        np.zeros((1, pred_pose.shape[-1]))).float()
                    zero_pose[:, 0] = np.pi
                    pred_frame_betas = torch.from_numpy(
                        pred_betas[frame_idx][None, :]).float()
                    with torch.no_grad():
                        reposed_smpl_output = smpl(
                            betas=pred_frame_betas,
                            body_pose=zero_pose[:, 3:],
                            global_orient=zero_pose[:, :3])
                        reposed_verts = reposed_smpl_output.vertices
                        reposed_verts = reposed_verts.cpu().detach().numpy()

                    reposed_cam = np.array([0.9, 0, 0])
                    reposed_rend_img = renderer.render(side_img_bg,
                                                       reposed_verts[0],
                                                       cam=reposed_cam)
                    reposed_rend_img90 = renderer.render(side_img_bg,
                                                         reposed_verts[0],
                                                         cam=reposed_cam,
                                                         angle=90,
                                                         axis=[0, 1, 0])

                    top_row = np.concatenate(
                        [img, reposed_rend_img, reposed_rend_img90], axis=1)
                    bot_row = np.concatenate(
                        [rend_img, side_rend_img90, side_rend_img270], axis=1)
                    whole_img = np.concatenate([top_row, bot_row], axis=0)

                else:
                    top_row = np.concatenate([img, side_img_bg, side_img_bg],
                                             axis=1)
                    bot_row = np.concatenate(
                        [rend_img, side_rend_img90, side_rend_img270], axis=1)
                    whole_img = np.concatenate([top_row, bot_row], axis=0)

            # cv2.imwrite(os.path.join(output_img_folder, f'{frame_idx:06d}.png'), whole_img)
            cv2.imwrite(
                os.path.join(output_img_folder, os.path.basename(img_fname)),
                whole_img)

        # ========= Save rendered video ========= #
        save_vid_path = os.path.join(output_path, 'vibe_video.mp4')
        print(f'Saving result video to {save_vid_path}')
        images_to_video(img_folder=output_img_folder,
                        output_vid_file=save_vid_path)

    print('================= END =================')