def refresh_dataTrain(request): # label, directory = get_Dataset('data_train') lbp, label, directory = get_lbpDataset('data_train', 8, 4) # local = get_lbpDataset('data_train', 8, 4) # print(local) DB.delete_all('tb_fastDataTraining') for x in range(len(label)): # # file_name = os.path.join("/home/night/Documents/Python3/TA_Wasis/myWebsite/",directory[x]) string = "" for z in lbp[x]: if string == "": string = str(z) else: string += "," + str(z) data_tabel = { 'lbp': string, 'label': label[x], 'directory': directory[x], # 'file_name' : file_name, } DB.insert('tb_fastDataTraining', data_tabel) return redirect('fast_train')
def get_eod(request, symbol, start_date=None, end_date=None): if not request.user.is_authenticated(): msg = { error: 'Not authenticated' } return HttpResponse(json.dumps(msg), content_type="application/json") db = DB(settings.YAHOO_DATABASE) rows = db.get_eod(symbol, start_date, end_date) return HttpResponse(json.dumps(rows), content_type="application/json")
def get_eod(request, symbol, start_date=None, end_date=None): if not request.user.is_authenticated(): msg = {error: 'Not authenticated'} return HttpResponse(json.dumps(msg), content_type="application/json") db = DB(settings.YAHOO_DATABASE) rows = db.get_eod(symbol, start_date, end_date) return HttpResponse(json.dumps(rows), content_type="application/json")
def index(request): label, directory = get_Dataset('data_train') # local = get_lbpDataset('data_train', 8, 4) # print(local) DB.delete_all('tb_dataTraining') for x in range(len(label)): # file_name = os.path.join("/home/night/Documents/Python3/TA_Wasis/myWebsite/",directory[x]) # string = "" # for z in data[x]: # if string == "": # string = str(z) # else: # string += ","+str(z) data_tabel = { # 'lbp' : string, 'label': label[x], 'directory': directory[x], # 'file_name' : file_name, } DB.insert('tb_dataTraining', data_tabel) tb_dataTraining = DB.find('tb_dataTraining') # data_train[0][0] # for data in data_train: # for dt in data: # print(dt) # print("\n") # print(data[0]) # print(data['label']) # print(data['directory']) # print("\n") context = { 'Judul': 'Dataset', 'SubJudul': 'Berikut dataset yang akan digunakan sebagai data training k-NN', 'tb_dataTraining': tb_dataTraining # 'data' : data, # 'label': label, # 'directory':directory } return render(request, 'Data_Train/index.html', context)
def upload(request): if request.method == 'POST': nilai_k = request.POST['nilai_k'] # point = request.POST['point'] # radius = request.POST['radius'] fs = FileSystemStorage() uploaded_file = request.FILES['image'] name = fs.save(uploaded_file.name, uploaded_file) print(name) directory = fs.url(name) # get directory OS file_name = os.path.join(MEDIA_ROOT, uploaded_file.name) # load image print(file_name) img = cv2.imread(file_name) # lbp_value = get_lbpImg(img, int(point), int(radius)) lbp_value = get_lbpImg(img, 8, 4) print(lbp_value) # data, label, direc = get_lbpDataset('data_train', int(point), int(radius)) # data, label, direc = get_lbpDataset('data_train', 8, 4) tb_dataTraining = DB.find('tb_fastDataTraining') dt_lbp = [] dt_label = [] for data in tb_dataTraining: lbp = data['lbp'].split(",") lbp = list(np.float_(lbp)) dt_lbp.append(lbp) dt_label.append(data['label']) # result = get_kNN_clasification(int(nilai_k), data, label, lbp_value) result = get_knn_clasification(int(nilai_k), dt_lbp, dt_label, lbp_value) print(result) final_result = DataTesting.objects.create(image=name, label=result[0], directory=directory) form = DataTestForm() context = { 'Judul': 'Form Pengujian', 'SubJudul': 'Form Pengujian', 'hasil': result, 'directory': directory, 'form': form } return render(request, 'Fast_Testing/upload.html', context) form = DataTestForm() context = {'Judul': 'Dataset', 'SubJudul': 'Data Testing', 'form': form} return render(request, 'Fast_Testing/upload.html', context)
def data_train(request): tb_dataTraining = DB.find('tb_fastDataTraining') # data_train[0][0] # for data in data_train: # for dt in data: # print(dt) # print("\n") # print(data[0]) # print(data['label']) # print(data['directory']) # print("\n") context = { 'Judul': 'Dataset', 'SubJudul': 'Berikut dataset yang akan digunakan sebagai data training k-NN', 'tb_dataTraining': tb_dataTraining # 'data' : data, # 'label': label, # 'directory':directory } return render(request, 'Fast_Testing/data_train.html', context)
def testing(request): point = 8 radius = 4 nilai_k = 1 fs = FileSystemStorage() uploaded_file = request.FILES['image'] # get file name name = fs.save(uploaded_file.name, uploaded_file) print(name) # get directori directory = fs.url(name) # get directory OS file_name = os.path.join(MEDIA_ROOT, uploaded_file.name) print(file_name) img = cv2.imread(file_name) lbp_value = get_lbpImg(img, int(point), int(radius)) # result = get_kNN_clasification(int(nilai_k), data, label, lbp_value) tb_dataTraining = DB.find('tb_fastDataTraining') dt_lbp = [] dt_label = [] for data in tb_dataTraining: lbp = data['lbp'].split(",") lbp = list(np.float_(lbp)) dt_lbp.append(lbp) dt_label.append(data['label']) result = get_knn_clasification(int(nilai_k), dt_lbp, dt_label, lbp_value) final_result = DataTesting.objects.create(image=name, label=result[0], directory=directory) response = {'response': 'sukses post', 'result': result[0]} return JsonResponse(response)
import pandas as pd import os import cv2 from lib.knn import get_knn_clasification from lib.main_function import get_lbpDataset, get_Dataset, get_lbpImg import numpy as np from .forms import DataTestForm from django.conf import settings from myWebsite.settings import MEDIA_ROOT from django.core.files.storage import FileSystemStorage my_storage = FileSystemStorage( location=os.path.join(settings.BASE_DIR, 'angga')) from lib.database import DB DB.init() def refresh_dataTrain(request): # label, directory = get_Dataset('data_train') lbp, label, directory = get_lbpDataset('data_train', 8, 4) # local = get_lbpDataset('data_train', 8, 4) # print(local) DB.delete_all('tb_fastDataTraining') for x in range(len(label)): # # file_name = os.path.join("/home/night/Documents/Python3/TA_Wasis/myWebsite/",directory[x])
if __name__ == "__main__": SETTINGS_FILE = os.path.dirname(os.path.realpath(__file__)) + '/settings.json' SETTINGS = json.loads(open(SETTINGS_FILE).read()) transmission = Transmission(SETTINGS['transmission']) if(transmission.version() == None): count = 0 showrss = ShowRSS(SETTINGS['showrss']['user_id']) shows = showrss.get_feed(SETTINGS['showrss']['retries']) if(shows): database = DB(SETTINGS['database']['type'], SETTINGS['database']) for show in shows: if not database.id_exists(show['_id']): print 'Found new episode: %s' % (show['title'].encode('utf8')) if transmission.add_torrent(show['link']): database.add_torrent(show) count += 1 else: print 'Failed to add %s' % (show['title'].encode('utf8')) if count != 0: print 'Added %s new torrents' % (count)
def load_db(): db = DB(config['mysql']) return db.db