示例#1
0
def rapidWind(Msg,wfpiconsole):

    """ Handles RapidWind Websocket messages received from either SKY or TEMPEST
        module

    INPUTS:
        Msg                 Websocket messages received from SKY or TEMPEST
        wfpiconsole         wfpiconsole object
    """

    # Replace missing observations from Rapid Wind Websocket JSON
    # with NaN
    Ob = [x if x != None else NaN for x in Msg['ob']]

    # Discard duplicate Rapid Wind Websocket messages
    if 'RapidMsg' in wfpiconsole.Obs:
        if wfpiconsole.Obs['RapidMsg']['ob'][0] == Ob[0]:
            print('Discarding duplicate Rapid Wind Websocket message')
            return

    # Extract observations from latest Rapid Wind Websocket JSON
    Time    = [Ob[0],'s']
    WindSpd = [Ob[1],'mps']
    WindDir = [Ob[2],'degrees']

    # Extract wind direction from previous SKY Rapid-Wind Websocket JSON
    if 'RapidMsg' in wfpiconsole.Obs:
        Ob = [x if x != None else NaN for x in wfpiconsole.Obs['RapidMsg']['ob']]
        WindDirOld = [Ob[2],'degrees']
    else:
        WindDirOld = [0,'degrees']

    # If windspeed is zero, freeze direction at last direction of non-zero wind
    # speed and edit latest Rapid Wind Websocket JSON. Calculate wind shift
    if WindSpd[0] == 0:
        WindDir = WindDirOld
        Msg['ob'][2] = WindDirOld[0]

    # Store latest Rapid Wind wfpiconsole.Observation JSON message
    wfpiconsole.Obs['RapidMsg'] = Msg

    # Calculate derived variables from Rapid Wind observations
    WindDir = derive.CardinalWindDirection(WindDir,WindSpd)

    # Convert observation units as required
    WindSpd = observation.Units(WindSpd,wfpiconsole.config['Units']['Wind'])
    WindDir = observation.Units(WindDir,'degrees')

    # Update wfpiconsole display with derived Rapid Wind observations
    wfpiconsole.Obs['rapidShift'] = WindDir[0] - WindDirOld[0]
    wfpiconsole.Obs['rapidSpd']   = observation.Format(WindSpd,'Wind')
    wfpiconsole.Obs['rapidDir']   = observation.Format(WindDir,'Direction')

    # Animate wind rose arrow if WindSpeedPanel panel is active
    if hasattr(wfpiconsole,'WindSpeedPanel'):
        for panel in getattr(wfpiconsole,'WindSpeedPanel'):
            panel.animateWindRose()

    # Return wfpiconsole object
    return wfpiconsole
def Units(Obs, Unit):
    """ Sets the required observation units

    INPUTS:
        Obs             Observations with current units
        Unit            Required output unit

    OUTPUT:
        cObs            Observation converted into required unit
    """

    # Convert temperature observations
    cObs = Obs[:]
    if Unit in ['f', 'c']:
        for ii, T in enumerate(Obs):
            if T == 'c':
                if Unit == 'f':
                    cObs[ii - 1] = Obs[ii - 1] * 9 / 5 + 32
                    cObs[ii] = 'f'
                else:
                    cObs[ii - 1] = Obs[ii - 1]
                    cObs[ii] = 'c'

    # Convert pressure and pressure trend observations
    elif Unit in ['inhg', 'mmhg', 'hpa', 'mb']:
        for ii, P in enumerate(Obs):
            if P in ['mb', 'mb/hr']:
                if Unit == 'inhg':
                    cObs[ii - 1] = Obs[ii - 1] * 0.0295301
                    if P == 'mb':
                        cObs[ii] = ' inHg'
                    else:
                        cObs[ii] = ' inHg/hr'
                elif Unit == 'mmhg':
                    cObs[ii - 1] = Obs[ii - 1] * 0.750063
                    if P == 'mb':
                        cObs[ii] = ' mmHg'
                    else:
                        cObs[ii] = ' mmHg/hr'
                elif Unit == 'hpa':
                    cObs[ii - 1] = Obs[ii - 1]
                    if P == 'mb':
                        cObs[ii] = ' hPa'
                    else:
                        cObs[ii] = ' hPa/hr'
                else:
                    cObs[ii - 1] = Obs[ii - 1]
                    if P == 'mb':
                        cObs[ii] = ' mb'
                    else:
                        cObs[ii] = ' mb/hr'

    # Convert windspeed observations
    elif Unit in ['mph', 'lfm', 'kts', 'kph', 'bft', 'mps']:
        for ii, W in enumerate(Obs):
            if W == 'mps':
                if Unit == 'mph' or Unit == 'lfm':
                    cObs[ii - 1] = Obs[ii - 1] * 2.2369362920544
                    cObs[ii] = 'mph'
                elif Unit == 'kts':
                    cObs[ii - 1] = Obs[ii - 1] * 1.9438
                    cObs[ii] = 'kts'
                elif Unit == 'kph':
                    cObs[ii - 1] = Obs[ii - 1] * 3.6
                    cObs[ii] = 'km/h'
                elif Unit == 'bft':
                    cObs[ii - 1] = derive.BeaufortScale(Obs[ii - 1:ii + 1])[2]
                    cObs[ii] = 'bft'
                else:
                    cObs[ii - 1] = Obs[ii - 1]
                    cObs[ii] = 'm/s'

    # Convert wind direction observations
    elif Unit in ['degrees', 'cardinal']:
        for ii, W in enumerate(Obs):
            if W == 'degrees':
                if cObs[ii - 1] is None:
                    cObs[ii - 1] = 'Calm'
                    cObs[ii] = ''
                elif Unit == 'cardinal':
                    cObs[ii - 1] = derive.CardinalWindDirection(Obs[ii - 1:ii +
                                                                    1])[2]
                    cObs[ii] = ''
                else:
                    cObs[ii - 1] = Obs[ii - 1]
                    cObs[ii] = 'degrees'

    # Convert rain accumulation and rain rate observations
    elif Unit in ['in', 'cm', 'mm']:
        for ii, Prcp in enumerate(Obs):
            if Prcp in ['mm', 'mm/hr']:
                if Unit == 'in':
                    cObs[ii - 1] = Obs[ii - 1] * 0.0393701
                    if Prcp == 'mm':
                        cObs[ii] = ' in'
                    else:
                        cObs[ii] = ' in/hr'
                elif Unit == 'cm':
                    cObs[ii - 1] = Obs[ii - 1] * 0.1
                    if Prcp == 'mm':
                        cObs[ii] = ' cm'
                    else:
                        cObs[ii] = ' cm/hr'
                else:
                    cObs[ii - 1] = Obs[ii - 1]
                    if Prcp == 'mm':
                        cObs[ii] = ' mm'
                    else:
                        cObs[ii] = ' mm/hr'

    # Convert distance observations
    elif Unit in ['km', 'mi']:
        for ii, Dist in enumerate(Obs):
            if Dist == 'km':
                if Unit == 'mi':
                    cObs[ii - 1] = Obs[ii - 1] * 0.62137
                    cObs[ii] = 'miles'

    # Return converted observations
    return cObs
def Tempest(Msg, wfpiconsole):
    """ Handles Websocket messages received from TEMPEST module

    INPUTS:
        Msg                 Websocket messages received from TEMPEST module
        wfpiconsole         wfpiconsole object
    """

    # Replace missing observations from latest TEMPEST Websocket JSON with NaN
    Ob = [x if x != None else NaN for x in Msg['obs'][0]]

    # Discard duplicate TEMPEST Websocket messages
    if 'TempestMsg' in wfpiconsole.Obs:
        if wfpiconsole.Obs['TempestMsg']['obs'][0] == Ob[0]:
            print('Discarding duplicate TEMPEST Websocket message')
            return

    # Extract TEMPEST device ID, API flag, and station configuration object
    Device = wfpiconsole.config['Station']['TempestID']
    flagAPI = wfpiconsole.flagAPI[0]
    Config = wfpiconsole.config

    # Extract required observations from latest TEMPEST Websocket JSON
    Time = [Ob[0], 's']
    WindSpd = [Ob[2], 'mps']
    WindGust = [Ob[3], 'mps']
    WindDir = [Ob[4], 'degrees']
    Pres = [Ob[6], 'mb']
    Temp = [Ob[7], 'c']
    Humidity = [Ob[8], '%']
    UV = [Ob[10], 'index']
    Radiation = [Ob[11], 'Wm2']
    Rain = [Ob[12], 'mm']
    Strikes = [Ob[15], 'count']

    # Extract lightning strike data from the latest AIR Websocket JSON "Summary"
    # object
    StrikeTime = [
        Msg['summary']['strike_last_epoch']
        if 'strike_last_epoch' in Msg['summary'] else NaN, 's'
    ]
    StrikeDist = [
        Msg['summary']['strike_last_dist']
        if 'strike_last_dist' in Msg['summary'] else NaN, 'km'
    ]
    Strikes3hr = [
        Msg['summary']['strike_count_3h']
        if 'strike_count_3h' in Msg['summary'] else NaN, 'count'
    ]

    # Store latest TEMPEST Websocket message
    wfpiconsole.Obs['TempestMsg'] = Msg

    # Extract required derived observations
    minPres = wfpiconsole.Obs['MinPres']
    maxPres = wfpiconsole.Obs['MaxPres']
    minTemp = wfpiconsole.Obs['outTempMin']
    maxTemp = wfpiconsole.Obs['outTempMax']
    StrikeCount = {
        'Today': wfpiconsole.Obs['StrikesToday'],
        'Month': wfpiconsole.Obs['StrikesMonth'],
        'Year': wfpiconsole.Obs['StrikesYear']
    }
    rainAccum = {
        'Today': wfpiconsole.Obs['TodayRain'],
        'Yesterday': wfpiconsole.Obs['YesterdayRain'],
        'Month': wfpiconsole.Obs['MonthRain'],
        'Year': wfpiconsole.Obs['YearRain']
    }
    peakSun = wfpiconsole.Obs['peakSun']
    avgWind = wfpiconsole.Obs['AvgWind']
    maxGust = wfpiconsole.Obs['MaxGust']

    # Request TEMPEST data from the previous three hours
    Data3h = requestAPI.weatherflow.Last3h(Device, Time[0], Config)

    # Calculate derived variables from TEMPEST observations
    DewPoint = derive.DewPoint(Temp, Humidity)
    SLP = derive.SLP(Pres, Config)
    PresTrend = derive.SLPTrend(Pres, Time, Data3h, Config)
    FeelsLike = derive.FeelsLike(Temp, Humidity, WindSpd, Config)
    MaxTemp, MinTemp = derive.TempMaxMin(Time, Temp, maxTemp, minTemp, Device,
                                         Config, flagAPI)
    MaxPres, MinPres = derive.SLPMaxMin(Time, Pres, maxPres, minPres, Device,
                                        Config, flagAPI)
    StrikeCount = derive.StrikeCount(Strikes, StrikeCount, Device, Config,
                                     flagAPI)
    StrikeFreq = derive.StrikeFrequency(Time, Data3h, Config)
    StrikeDeltaT = derive.StrikeDeltaT(StrikeTime)
    FeelsLike = derive.FeelsLike(Temp, Humidity, WindSpd, Config)
    RainRate = derive.RainRate(Rain)
    rainAccum = derive.RainAccumulation(Rain, rainAccum, Device, Config,
                                        flagAPI)
    AvgWind = derive.MeanWindSpeed(WindSpd, avgWind, Device, Config, flagAPI)
    MaxGust = derive.MaxWindGust(WindGust, maxGust, Device, Config, flagAPI)
    WindSpd = derive.BeaufortScale(WindSpd)
    WindDir = derive.CardinalWindDirection(WindDir, WindSpd)
    peakSun = derive.peakSunHours(Radiation, peakSun, wfpiconsole.Astro,
                                  Device, Config, flagAPI)
    UVIndex = derive.UVIndex(UV)

    # Convert observation units as required
    Temp = observation.Units(Temp, Config['Units']['Temp'])
    MaxTemp = observation.Units(MaxTemp, Config['Units']['Temp'])
    MinTemp = observation.Units(MinTemp, Config['Units']['Temp'])
    DewPoint = observation.Units(DewPoint, Config['Units']['Temp'])
    FeelsLike = observation.Units(FeelsLike, Config['Units']['Temp'])
    SLP = observation.Units(SLP, Config['Units']['Pressure'])
    MaxPres = observation.Units(MaxPres, Config['Units']['Pressure'])
    MinPres = observation.Units(MinPres, Config['Units']['Pressure'])
    PresTrend = observation.Units(PresTrend, Config['Units']['Pressure'])
    StrikeDist = observation.Units(StrikeDist, Config['Units']['Distance'])
    RainRate = observation.Units(RainRate, Config['Units']['Precip'])
    TodayRain = observation.Units(rainAccum['Today'],
                                  Config['Units']['Precip'])
    YesterdayRain = observation.Units(rainAccum['Yesterday'],
                                      Config['Units']['Precip'])
    MonthRain = observation.Units(rainAccum['Month'],
                                  Config['Units']['Precip'])
    YearRain = observation.Units(rainAccum['Year'], Config['Units']['Precip'])
    WindSpd = observation.Units(WindSpd, Config['Units']['Wind'])
    WindDir = observation.Units(WindDir, Config['Units']['Direction'])
    WindGust = observation.Units(WindGust, Config['Units']['Wind'])
    AvgWind = observation.Units(AvgWind, Config['Units']['Wind'])
    MaxGust = observation.Units(MaxGust, Config['Units']['Wind'])
    FeelsLike = observation.Units(FeelsLike, Config['Units']['Temp'])

    # Store derived TEMPEST observations in dictionary
    derivedObs = {}
    derivedObs['outTemp'] = observation.Format(Temp, 'Temp')
    derivedObs['outTempMax'] = observation.Format(MaxTemp, 'Temp')
    derivedObs['outTempMin'] = observation.Format(MinTemp, 'Temp')
    derivedObs['DewPoint'] = observation.Format(DewPoint, 'Temp')
    derivedObs['FeelsLike'] = observation.Format(FeelsLike, 'Temp')
    derivedObs['Pres'] = observation.Format(SLP, 'Pressure')
    derivedObs['MaxPres'] = observation.Format(MaxPres, 'Pressure')
    derivedObs['MinPres'] = observation.Format(MinPres, 'Pressure')
    derivedObs['PresTrend'] = observation.Format(PresTrend, 'Pressure')
    derivedObs['StrikeDeltaT'] = observation.Format(StrikeDeltaT, 'TimeDelta')
    derivedObs['StrikeDist'] = observation.Format(StrikeDist, 'StrikeDistance')
    derivedObs['StrikeFreq'] = observation.Format(StrikeFreq,
                                                  'StrikeFrequency')
    derivedObs['Strikes3hr'] = observation.Format(Strikes3hr, 'StrikeCount')
    derivedObs['StrikesToday'] = observation.Format(StrikeCount['Today'],
                                                    'StrikeCount')
    derivedObs['StrikesMonth'] = observation.Format(StrikeCount['Month'],
                                                    'StrikeCount')
    derivedObs['StrikesYear'] = observation.Format(StrikeCount['Year'],
                                                   'StrikeCount')
    derivedObs['Humidity'] = observation.Format(Humidity, 'Humidity')
    derivedObs['FeelsLike'] = observation.Format(FeelsLike, 'Temp')
    derivedObs['RainRate'] = observation.Format(RainRate, 'Precip')
    derivedObs['TodayRain'] = observation.Format(TodayRain, 'Precip')
    derivedObs['YesterdayRain'] = observation.Format(YesterdayRain, 'Precip')
    derivedObs['MonthRain'] = observation.Format(MonthRain, 'Precip')
    derivedObs['YearRain'] = observation.Format(YearRain, 'Precip')
    derivedObs['WindSpd'] = observation.Format(WindSpd, 'Wind')
    derivedObs['WindGust'] = observation.Format(WindGust, 'Wind')
    derivedObs['AvgWind'] = observation.Format(AvgWind, 'Wind')
    derivedObs['MaxGust'] = observation.Format(MaxGust, 'Wind')
    derivedObs['WindDir'] = observation.Format(WindDir, 'Direction')
    derivedObs['Radiation'] = observation.Format(Radiation, 'Radiation')
    derivedObs['peakSun'] = observation.Format(peakSun, 'peakSun')
    derivedObs['UVIndex'] = observation.Format(UVIndex, 'UV')

    # Update wfpiconsole display with derived TEMPEST observations
    updateDisplay(derivedObs, wfpiconsole, 'Tempest')

    # Set flags for required API calls
    wfpiconsole.flagAPI[0] = 0

    # Return wfpiconsole object
    return wfpiconsole
def Sky(Msg, wfpiconsole):
    """ Handles Websocket messages received from SKY module

    INPUTS:
        Msg                 Websocket messages received from SKY module
        wfpiconsole         wfpiconsole object
    """

    # Replace missing observations from latest SKY Websocket JSON with NaN
    Ob = [x if x != None else NaN for x in Msg['obs'][0]]

    # Discard duplicate SKY Websocket messages
    if 'SkyMsg' in wfpiconsole.Obs:
        if wfpiconsole.Obs['SkyMsg']['obs'][0] == Ob[0]:
            print('Discarding duplicate SKY Websocket message')
            return

    # Extract SKY device ID and API flag, and station configuration object
    Device = wfpiconsole.config['Station']['SkyID']
    flagAPI = wfpiconsole.flagAPI[1]
    Config = wfpiconsole.config

    # Extract required observations from latest SKY Websocket JSON
    Time = [Ob[0], 's']
    UV = [Ob[2], 'index']
    Rain = [Ob[3], 'mm']
    WindSpd = [Ob[5], 'mps']
    WindGust = [Ob[6], 'mps']
    WindDir = [Ob[7], 'degrees']
    Radiation = [Ob[10], 'Wm2']

    # Store latest SKY Websocket message
    wfpiconsole.Obs['SkyMsg'] = Msg

    # Extract required observations from latest AIR Websocket observations
    while not 'outAirMsg' in wfpiconsole.Obs:
        time.sleep(0.01)
    Ob = [
        x if x != None else NaN for x in wfpiconsole.Obs['outAirMsg']['obs'][0]
    ]
    Temp = [Ob[2], 'c']
    Humidity = [Ob[3], '%']

    # Set wind direction to None if wind speed is zero
    if WindSpd[0] == 0:
        WindDir = [None, 'degrees']

    # Extract required derived observations
    rainAccum = {
        'Today': wfpiconsole.Obs['TodayRain'],
        'Yesterday': wfpiconsole.Obs['YesterdayRain'],
        'Month': wfpiconsole.Obs['MonthRain'],
        'Year': wfpiconsole.Obs['YearRain']
    }
    peakSun = wfpiconsole.Obs['peakSun']
    avgWind = wfpiconsole.Obs['AvgWind']
    maxGust = wfpiconsole.Obs['MaxGust']

    # Calculate derived variables from SKY observations
    FeelsLike = derive.FeelsLike(Temp, Humidity, WindSpd, Config)
    RainRate = derive.RainRate(Rain)
    rainAccum = derive.RainAccumulation(Rain, rainAccum, Device, Config,
                                        flagAPI)
    AvgWind = derive.MeanWindSpeed(WindSpd, avgWind, Device, Config, flagAPI)
    MaxGust = derive.MaxWindGust(WindGust, maxGust, Device, Config, flagAPI)
    WindSpd = derive.BeaufortScale(WindSpd)
    WindDir = derive.CardinalWindDirection(WindDir, WindSpd)
    peakSun = derive.peakSunHours(Radiation, peakSun, wfpiconsole.Astro,
                                  Device, Config, flagAPI)
    UVIndex = derive.UVIndex(UV)

    # Convert observation units as required
    RainRate = observation.Units(RainRate, Config['Units']['Precip'])
    TodayRain = observation.Units(rainAccum['Today'],
                                  Config['Units']['Precip'])
    YesterdayRain = observation.Units(rainAccum['Yesterday'],
                                      Config['Units']['Precip'])
    MonthRain = observation.Units(rainAccum['Month'],
                                  Config['Units']['Precip'])
    YearRain = observation.Units(rainAccum['Year'], Config['Units']['Precip'])
    WindSpd = observation.Units(WindSpd, Config['Units']['Wind'])
    WindDir = observation.Units(WindDir, Config['Units']['Direction'])
    WindGust = observation.Units(WindGust, Config['Units']['Wind'])
    AvgWind = observation.Units(AvgWind, Config['Units']['Wind'])
    MaxGust = observation.Units(MaxGust, Config['Units']['Wind'])
    FeelsLike = observation.Units(FeelsLike, Config['Units']['Temp'])

    # Store derived SKY observations in dictionary
    derivedObs = {}
    derivedObs['FeelsLike'] = observation.Format(FeelsLike, 'Temp')
    derivedObs['RainRate'] = observation.Format(RainRate, 'Precip')
    derivedObs['TodayRain'] = observation.Format(TodayRain, 'Precip')
    derivedObs['YesterdayRain'] = observation.Format(YesterdayRain, 'Precip')
    derivedObs['MonthRain'] = observation.Format(MonthRain, 'Precip')
    derivedObs['YearRain'] = observation.Format(YearRain, 'Precip')
    derivedObs['WindSpd'] = observation.Format(WindSpd, 'Wind')
    derivedObs['WindGust'] = observation.Format(WindGust, 'Wind')
    derivedObs['AvgWind'] = observation.Format(AvgWind, 'Wind')
    derivedObs['MaxGust'] = observation.Format(MaxGust, 'Wind')
    derivedObs['WindDir'] = observation.Format(WindDir, 'Direction')
    derivedObs['Radiation'] = observation.Format(Radiation, 'Radiation')
    derivedObs['peakSun'] = observation.Format(peakSun, 'peakSun')
    derivedObs['UVIndex'] = observation.Format(UVIndex, 'UV')

    # Update wfpiconsole display with derived SKY observations
    updateDisplay(derivedObs, wfpiconsole, 'Sky')

    # Set flags for required API calls
    wfpiconsole.flagAPI[1] = 0

    # Return wfpiconsole object
    return wfpiconsole
示例#5
0
def Download(metData, Config, dt):
    """ Download the latest daily and hourly weather forecast data using the
    WeatherFlow BetterForecast API

    INPUTS:
        metData             Dictionary holding weather forecast data
        Config              Station configuration
        dt                  Time in seconds since function last called

    OUTPUT:
        metData             Dictionary holding weather forecast data
    """

    # Get current time in station time zone
    Tz = pytz.timezone(Config['Station']['Timezone'])
    funcCalled = datetime.now(pytz.utc).astimezone(Tz)
    Midnight = int(
        Tz.localize(datetime(funcCalled.year, funcCalled.month,
                             funcCalled.day)).timestamp())
    funcError = 0

    # Set time format based on user configuration
    if Config['Display']['TimeFormat'] == '12 hr':
        if Config['System']['Hardware'] != 'Other':
            TimeFormat = '%-I %P'
        else:
            TimeFormat = '%I %p'
    else:
        TimeFormat = '%H:%M'

    # Download latest forecast data
    Data = requestAPI.weatherflow.Forecast(Config)

    # Verify API response and extract forecast
    if requestAPI.weatherflow.verifyResponse(Data, 'forecast'):
        metData['Dict'] = Data.json()
    else:
        funcError = 1
        if not 'Dict' in metData:
            metData['Dict'] = {}

    # Extract all forecast data from WeatherFlow JSON object
    try:
        # Extract all hourly and daily forecasts
        hourlyForecasts = (metData['Dict']['forecast']['hourly'])
        dailyForecasts = (metData['Dict']['forecast']['daily'])

        # Extract 'valid from' time of all available hourly forecasts and
        # retrieve forecast for the current hour
        Hours = list(forecast['time'] for forecast in hourlyForecasts)
        hoursInd = bisect.bisect(Hours, int(UNIX.time()))
        hourlyCurrent = hourlyForecasts[hoursInd]
        hourlyLocalDay = hourlyCurrent['local_day']

        # Extract 'Valid' until time of forecast for current hour
        Valid = Hours[bisect.bisect(Hours, int(UNIX.time()))]
        Valid = datetime.fromtimestamp(Valid, pytz.utc).astimezone(Tz)

        # Extract 'day_start_local' time of all available daily forecasts and
        # retrieve forecast for the current day
        dailyDayNum = list(forecast['day_num'] for forecast in dailyForecasts)
        dailyCurrent = dailyForecasts[dailyDayNum.index(hourlyLocalDay)]

        # Extract weather variables from current hourly forecast
        Temp = [hourlyCurrent['air_temperature'], 'c']
        WindSpd = [hourlyCurrent['wind_avg'], 'mps']
        WindGust = [hourlyCurrent['wind_gust'], 'mps']
        WindDir = [hourlyCurrent['wind_direction'], 'degrees']
        Icon = hourlyCurrent['icon'].replace('cc-', '')

        # Extract Precipitation Type, Percent, and Amount from current hourly
        # forecast
        if 'precip_type' in hourlyCurrent:
            PrecipType = hourlyCurrent['precip_type']
            if PrecipType not in ['rain', 'snow']:
                PrecipType = 'rain'
        else:
            PrecipType = 'rain'
        if 'precip_probability' in hourlyCurrent:
            PrecipPercnt = [hourlyCurrent['precip_probability'], '%']
        else:
            PrecipPercnt = [0, '%']
        if 'precip' in hourlyCurrent:
            PrecipAmount = [hourlyCurrent['precip'], 'mm']
        else:
            PrecipAmount = [0, 'mm']

        # Extract weather variables from current daily forecast
        highTemp = [dailyCurrent['air_temp_high'], 'c']
        lowTemp = [dailyCurrent['air_temp_low'], 'c']
        precipDay = [dailyCurrent['precip_probability'], '%']

        # Extract list of expected conditions and find time when expected conditions
        # will change
        conditionList = list(forecast['conditions']
                             for forecast in hourlyForecasts[hoursInd:])
        try:
            Ind = next(i for i, C in enumerate(conditionList)
                       if C != hourlyCurrent['conditions'])
        except StopIteration:
            Ind = len(conditionList) - 1
        Time = datetime.fromtimestamp(Hours[Ind], pytz.utc).astimezone(Tz)
        if Time.date() == funcCalled.date():
            Conditions = hourlyCurrent['conditions'].capitalize(
            ) + ' until ' + datetime.strftime(Time, TimeFormat) + ' today'
        elif Time.date() == funcCalled.date() + timedelta(days=1):
            Conditions = hourlyCurrent['conditions'].capitalize(
            ) + ' until ' + datetime.strftime(Time, TimeFormat) + ' tomorrow'
        else:
            Conditions = hourlyCurrent['conditions'].capitalize(
            ) + ' until ' + datetime.strftime(
                Time, TimeFormat) + ' on ' + Time.strftime('%A')

        # Calculate derived variables from forecast
        WindDir = derive.CardinalWindDirection(WindDir, WindSpd)

        # Convert forecast units as required
        Temp = observation.Units(Temp, Config['Units']['Temp'])
        highTemp = observation.Units(highTemp, Config['Units']['Temp'])
        lowTemp = observation.Units(lowTemp, Config['Units']['Temp'])
        WindSpd = observation.Units(WindSpd, Config['Units']['Wind'])
        WindGust = observation.Units(WindGust, Config['Units']['Wind'])
        WindDir = observation.Units(WindDir, Config['Units']['Direction'])
        PrecipAmount = observation.Units(PrecipAmount,
                                         Config['Units']['Precip'])

        # Define and format labels
        metData['Time'] = funcCalled
        metData['Valid'] = datetime.strftime(Valid, TimeFormat)
        metData['Temp'] = observation.Format(Temp, 'forecastTemp')
        metData['highTemp'] = observation.Format(highTemp, 'forecastTemp')
        metData['lowTemp'] = observation.Format(lowTemp, 'forecastTemp')
        metData['WindSpd'] = observation.Format(WindSpd, 'forecastWind')
        metData['WindGust'] = observation.Format(WindGust, 'forecastWind')
        metData['WindDir'] = observation.Format(WindDir, 'Direction')
        metData['PrecipPercnt'] = observation.Format(PrecipPercnt, 'Humidity')
        metData['PrecipDay'] = observation.Format(precipDay, 'Humidity')
        metData['PrecipAmount'] = observation.Format(PrecipAmount, 'Precip')
        metData['PrecipType'] = PrecipType
        metData['Conditions'] = Conditions
        metData['Icon'] = Icon
        metData['Status'] = ''

        # Check expected conditions icon is recognised
        if Icon in [
                'clear-day', 'clear-night', 'rainy', 'possibly-rainy-day',
                'possibly-rainy-night', 'snow', 'possibly-snow-day',
                'possibly-snow-night', 'sleet', 'possibly-sleet-day',
                'possibly-sleet-night', 'thunderstorm',
                'possibly-thunderstorm-day'
                'possibly-thunderstorm-night', 'windy', 'foggy', 'cloudy',
                'partly-cloudy-day', 'partly-cloudy-night'
        ]:
            metData['Icon'] = Icon
        else:
            metData['Icon'] = '--'

    # Unable to extract forecast data from JSON object. Set set forecast
    # variables to blank and indicate to user that forecast is unavailable
    except (IndexError, KeyError, ValueError):
        metData['Time'] = funcCalled
        metData['Valid'] = '--'
        metData['Temp'] = '--'
        metData['highTemp'] = '--'
        metData['lowTemp'] = '--'
        metData['WindSpd'] = '--'
        metData['WindGust'] = '--'
        metData['WindDir'] = '--'
        metData['PrecipPercnt'] = '--'
        metData['PrecipDay'] = '--'
        metData['PrecipAmount'] = '--'
        metData['PrecipType'] = '--'
        metData['Conditions'] = ''
        metData['Icon'] = '--'
        metData['Status'] = 'Forecast currently\nunavailable...'
        funcError = 1

    # Schedule new forecast to be downloaded at the top of the next hour, or in
    # 5 minutes if error was detected. Note secondsSched refers to number of
    # seconds since the function was last called.
    Now = datetime.now(pytz.utc).astimezone(Tz)
    downloadTime = Tz.localize(
        datetime.combine(Now.date(), time(Now.hour, 0, 0)) +
        timedelta(hours=1))
    if not funcError:
        secondsSched = math.ceil((downloadTime - funcCalled).total_seconds())
    else:
        secondsSched = 300 + math.ceil((funcCalled - Now).total_seconds())
    Clock.schedule_once(partial(Download, metData, Config), secondsSched)

    # Return metData dictionary
    return metData
示例#6
0
def ExtractDarkSky(metData, Config):
    """ Parse the weather forecast from DarkSky

    INPUTS:
        metData             Dictionary holding weather forecast data
        Config              Station configuration

    OUTPUT:
        metData             Dictionary holding weather forecast data
    """

    # Get current time in station time zone
    Tz = pytz.timezone(Config['Station']['Timezone'])
    Now = datetime.now(pytz.utc).astimezone(Tz)

    # Extract all forecast data from DarkSky JSON file. If  forecast is
    # unavailable, set forecast variables to blank and indicate to user that
    # forecast is unavailable
    Tz = pytz.timezone(Config['Station']['Timezone'])
    try:
        metDict = (metData['Dict']['hourly']['data'])
    except KeyError:
        metData['Time'] = Now
        metData['Temp'] = '--'
        metData['WindDir'] = '--'
        metData['WindSpd'] = '--'
        metData['Weather'] = 'ForecastUnavailable'
        metData['Precip'] = '--'
        metData['Valid'] = '--'

        # Attempt to download forecast again in 10 minutes and return
        # metData dictionary
        Clock.schedule_once(lambda dt: Download(metData, Config), 600)
        return metData

    # Extract 'valid from' time of all available hourly forecasts, and
    # retrieve forecast for the current hourly period
    Times = list(item['time'] for item in metDict)
    metDict = metDict[bisect.bisect(Times, int(time.time())) - 1]

    # Extract 'Issued' and 'Valid' times
    Issued = Times[0]
    Valid = Times[bisect.bisect(Times, int(time.time()))]
    Issued = datetime.fromtimestamp(Issued, pytz.utc).astimezone(Tz)
    Valid = datetime.fromtimestamp(Valid, pytz.utc).astimezone(Tz)

    # Extract weather variables from DarkSky forecast
    Temp = [metDict['temperature'], 'c']
    WindSpd = [metDict['windSpeed'] / 2.2369362920544, 'mps']
    WindDir = [metDict['windBearing'], 'degrees']
    Precip = [metDict['precipProbability'] * 100, '%']
    Weather = metDict['icon']

    # Convert forecast units as required
    Temp = observation.Units(Temp, Config['Units']['Temp'])
    WindSpd = observation.Units(WindSpd, Config['Units']['Wind'])

    # Define and format labels
    metData['Time'] = Now
    metData['Issued'] = datetime.strftime(Issued, '%H:%M')
    metData['Valid'] = datetime.strftime(Valid, '%H:%M')
    metData['Temp'] = ['{:.1f}'.format(Temp[0]), Temp[1]]
    metData['WindDir'] = derive.CardinalWindDirection(WindDir)[2]
    metData['WindSpd'] = ['{:.0f}'.format(WindSpd[0]), WindSpd[1]]
    metData['Precip'] = '{:.0f}'.format(Precip[0])

    # Define weather icon
    if Weather == 'clear-day':
        metData['Weather'] = '1'
    elif Weather == 'clear-night':
        metData['Weather'] = '0'
    elif Weather == 'rain':
        metData['Weather'] = '12'
    elif Weather == 'snow':
        metData['Weather'] = '27'
    elif Weather == 'sleet':
        metData['Weather'] = '18'
    elif Weather == 'wind':
        metData['Weather'] = 'wind'
    elif Weather == 'fog':
        metData['Weather'] = '6'
    elif Weather == 'cloudy':
        metData['Weather'] = '7'
    elif Weather == 'partly-cloudy-day':
        metData['Weather'] = '3'
    elif Weather == 'partly-cloudy-night':
        metData['Weather'] = '2'
    else:
        metData['Weather'] = 'ForecastUnavailable'

    # Return metData dictionary
    return metData