def load_face_filter(self, filter_lists, ref_threshold): """ Load faces to filter out of images """ if not any(val for val in filter_lists.values()): return None filter_files = [self.set_face_filter(f_type, filter_lists[f_type]) for f_type in ("filter", "nfilter")] if any(filters for filters in filter_files): facefilter = FilterFunc(filter_files[0], filter_files[1], ref_threshold) logger.debug("Face filter: %s", facefilter) return facefilter
def load_face_filter(self, filter_lists, ref_threshold, aligner, detector, multiprocess): """ Load faces to filter out of images """ if not any(val for val in filter_lists.values()): return None facefilter = None filter_files = [ self.set_face_filter(f_type, filter_lists[f_type]) for f_type in ("filter", "nfilter") ] if any(filters for filters in filter_files): facefilter = FilterFunc(filter_files[0], filter_files[1], detector, aligner, multiprocess, ref_threshold) logger.debug("Face filter: %s", facefilter) else: self.valid = False return facefilter
def _load_face_filter(self, filter_lists, ref_threshold, aligner, detector, multiprocess): """ Set up and load the :class:`~lib.face_filter.FaceFilter`. Parameters ---------- filter_lists: dict The filter and nfilter image paths ref_threshold: float The reference threshold for a positive match aligner: str The aligner to use detector: str The detector to use multiprocess: bool Whether to run the extraction pipeline in single process mode or not Returns ------- :class:`~lib.face_filter.FaceFilter` The face filter """ if not any(val for val in filter_lists.values()): return None facefilter = None filter_files = [self._set_face_filter(f_type, filter_lists[f_type]) for f_type in ("filter", "nfilter")] if any(filters for filters in filter_files): facefilter = FilterFunc(filter_files[0], filter_files[1], detector, aligner, multiprocess, ref_threshold) logger.debug("Face filter: %s", facefilter) else: self.valid = False return facefilter