示例#1
0
def getY(filename, trainIDs, testIDs, predict):
    path = os.getcwd()+'/'
    IDDict = futil.LoadDictFromTxt(path+filename, 'vid')
    compressed = 'compressed' in filename
    #filepath = makePathMR(filename, '-mergerMinRanges')
    filepath = makeFullPath(filename, '-mergerRanges.txt')
    MR = np.loadtxt(filepath, dtype='int')
    Ytrain = np.array([])    #will have numTrain*numFrames rows and 1 column
    Ytest = np.array([])
    if not numUsing == 0:
        MR = MR[:numUsing]
    for row in MR:
        YVID = np.ascontiguousarray(getYInner(row,IDDict[row[0]], predict, compressed))
        if row[0] in trainIDs:
            Ytrain=append(Ytrain,YVID) #uses append because Y is small in memory
            print("Finished getting Y data for Merger with VID:",row[0]," and it is a training example")
        else:
            Ytest=append(Ytest,YVID)
            print("Finished getting Y data for Merger with VID:",row[0]," and it is a test example")
    return np.ascontiguousarray(Ytrain), np.ascontiguousarray(Ytest)
示例#2
0
def getX(filename, trainIDs, testIDs, mean_centered):
    #filename="res/101_trajectories/aug_trajectories-0750am-0805am.txt"
    path = os.getcwd()+'/'
    compressed = 'compressed' in filename
    frameDict = futil.LoadDictFromTxt(path+filename, 'frame')
    print("Gotten frameDict",time.ctime())
    dictOfGrids = futil.GetGridsFromFrameDict(frameDict, mean_centered, compressed)
    print("Gotten dictOfGrids",time.ctime())
    #filepath = makePathMR(filename, '-mergerMinRanges')
    filepath = makeFullPath(filename, '-mergerRanges.txt')
    MR = np.loadtxt(filepath, dtype='int')
    '''MR=MergeRanges. MR[:,0]=merge ids, MR[:,1]=start frame, MR[:,2] = end'''
    print ("Done loading in getX", time.ctime())
    start = getStartVals(filename)    
    Xtrain = np.array([])   #will have numTrain*numFrames rows and size(grid)+1 columns
    Xtest = np.array([])
    it = 0
    trainEmpty = True
    testEmpty = True
    if not numUsing == 0:
        MR = MR[:numUsing]
    for row in MR:
        thisStart = start[it]
        XVID = sparse.csr_matrix(np.ascontiguousarray(getXInner(row, dictOfGrids,thisStart,frameDict, compressed)))
        if row[0] in trainIDs:
            if  trainEmpty == True:
                Xtrain = XVID
                trainEmpty = False
            else:
                Xtrain = sparse.vstack((Xtrain,XVID))#,axis=0)
            print("Finished getting X data for Merger with VID:",row[0]," and it is a training example", time.ctime())
        else:
            if testEmpty == True:
                Xtest = XVID
                testEmpty = False
            else:
                Xtest = sparse.vstack((Xtest,XVID))#np.append(Xtest,XVID,axis=0)
            print("Finished getting X data for Merger with VID:",row[0]," and it is a test example")
        it += 1
        print(Xtrain.shape)
    return Xtrain, Xtest
示例#3
0
def main(argv):
    frameDict = futil.LoadDictFromTxt(
        "res/Lankershim/aug_trajectories-0750am-0805am.txt", 'frame')
    futil.AnimateFrames(frameDict)