def multilayer_perceptron(): mlnn = MultiLayerNeuralNetwork( [2, 4, 1], threshold=0.5, learning_coefficient=0.5, sigmoid_alpha=5) x_range = [0,10] y_range = [0,10] # liner_data = TrainingData.liner_training_data(x_range, y_range) #liner_data = TrainingData.quadratic_function_data(x_range, y_range) liner_data = TrainingData.sin_function_data(x_range, y_range, 5) train_data = TrainingData.change_format(liner_data) # 教師データのプロット fig = plt.figure() scat(fig, [key for key, value in liner_data.items() if value == 0], color='g' ) scat(fig, [key for key, value in liner_data.items() if value == 1], color='b' ) # 学習 sample_border = len(train_data) random.shuffle(train_data) #mlnn.train(train_data[:20]) mlnn.train(train_data[:sample_border]) # xに対応するyを算出 data = get_predict_list(x_range,y_range, mlnn) # 学習後分離線 plot(fig, data) plt.show()
def simple_perceptron(): # simple perceptron sp = SimplePerceptron( input_neuron_num = 2, output_neuron_num = 1, threshold = 1.0, learning_coefficient = 0.5, output_function_type = 1) # train data x_range = [0,30] y_range = [0,30] liner_data = TrainingData.liner_training_data(x_range, y_range) train_data = TrainingData.change_format(liner_data) # 教師データのプロット fig = plt.figure() scat(fig, [key for key, value in liner_data.items() if value == 0], color='g' ) scat(fig, [key for key, value in liner_data.items() if value == 1], color='b' ) # 学習前分離線 data = get_predict_list(x_range,y_range, sp) plot(fig, data) # 学習 sample_border = len(train_data) / 3 random.shuffle(train_data) for i in range(100): sp.train(train_data[:sample_border]) # 学習後分離線 data = get_predict_list(x_range,y_range, sp) plot(fig, data) plt.show()
def test_change_format(self): x_range = [0, 1] y_range = [0, 1] liner_data = get_training_data.liner_training_data(x_range,y_range) train_data = get_training_data.change_format(liner_data) self.assertEquals(train_data, [[[0,1],[1]], [[1,0],[1]], [[0,0],[1]], [[1,1],[1]]])