'close': _sym, 'volume': _sym+'_Volume' }) #bchn = s.get_dataset(DatasetType.BLOCKCHAIN) # correlation(bchn.corr(), 'data/result/blockchain-corr.png', figsize=(32,18)) # pat = s.get_dataset(DatasetType.OHLCV_PATTERN) # bchn.to_csv('data/result/block1chain-dataset.csv', sep=',', encoding='utf-8', index=True, index_label='Date') # pat.to_csv('data/result/ohlcv_pattern.csv', sep=',', encoding='utf-8', index=True, index_label='Date') # fourier_transform(bchn['CapMVRVCur']) m = MNBModel() s = s.time_slice('2018-01-01', '2018-02-27', format='%Y-%m-%d') j = Job(symbol=s, model=m) reports = j.grid_search(x_type=DatasetType.DISCRETE_TA, y_type=DatasetType.DISCRETE_TA, multiprocessing=False, discretize=False, variance_threshold=0.01, params={'fit_prior': False, 'alpha': 0.01}) # Common if isinstance(reports, list): c = ReportCollection(reports) df = c.to_dataframe() print(df.head()) br = min(reports) print('Best config:\n\t{} accuracy: {} mse: {} profit: {}%'.format(str(br), str(br.accuracy()), str(br.mse()), br.profit())) else: print('{} accuracy: {} mse: {} profit: {}%'.format(str(reports), str(reports.accuracy()), str(reports.mse()), reports.profit())) br = reports #signal_plot(ohlcv, result)
}) # bchn = s.get_dataset(DatasetType.BLOCKCHAIN) # correlation(bchn.corr(), 'data/result/blockchain-corr.png', figsize=(32,18)) # pat = s.get_dataset(DatasetType.OHLCV_PATTERN) # bchn.to_csv('data/result/block1chain-dataset.csv', sep=',', encoding='utf-8', index=True, index_label='Date') # pat.to_csv('data/result/ohlcv_pattern.csv', sep=',', encoding='utf-8', index=True, index_label='Date') # fourier_transform(bchn['CapMVRVCur']) m = ModelFactory.create_model('mlp') #s = s.add_lag(7) s = s.time_slice('2018-01-01', '2018-02-27', format='%Y-%m-%d') j = Job(symbol=s, model=m) reports = j.grid_search( x_type=DatasetType.CONTINUOUS_TA, y_type=DatasetType.DISCRETE_TA, #undersample=True, #multiprocessing=False, #discretize=False, #variance_threshold=0.01, ) # Common if isinstance(reports, list): c = ReportCollection(reports) df = c.to_dataframe() print(df.head()) br = min(reports) print('Best config:\n\t{} accuracy: {} mse: {} profit: {}%'.format( str(br), str(br.accuracy()), str(br.mse()), br.profit())) else: print('{} accuracy: {} mse: {} profit: {}%'.format(str(reports), str(reports.accuracy()),