def __init__(self, classes, num_layers=101, pretrained=False, class_agnostic=False): self.model_path = 'data/pretrained_model/resnet101_caffe.pth' self.dout_base_model = 1024 self.pretrained = pretrained self.class_agnostic = class_agnostic _fasterRCNN.__init__(self, classes, class_agnostic)
def __init__(self, classes, pretrained=False, class_agnostic=False): self.model_path = 'Data/pretrained_model/vgg16_caffe.pth' self.dout_base_model = 512 self.pretrained = pretrained self.class_agnostic = class_agnostic _fasterRCNN.__init__(self, classes, class_agnostic)
def __init__(self, classes, pretrained=False, class_agnostic=False): #self.model_path = 'data/pretrained_model/vgg16_caffe.pth' self.model_path = '/data/qingbeiguo/work/faster-rcnn.pytorch-pytorch-1.0/faster-rcnn.pytorch-pytorch-1.0/lib/model/faster_rcnn/pretrained_model/vgg16_caffe.pth' self.dout_base_model = 512 self.pretrained = pretrained self.class_agnostic = class_agnostic _fasterRCNN.__init__(self, classes, class_agnostic)
def __init__(self, classes, num_layers=101, pretrained=False, class_agnostic=False): #self.model_path = 'data/pretrained_model/resnet101_caffe.pth' #self.model_path = '/data/qingbeiguo/work/faster-rcnn.pytorch-pytorch-1.0/faster-rcnn.pytorch-pytorch-1.0/lib/model/faster_rcnn/pretrained_model/resnet101_caffe.pth' self.model_path = '/data/qingbeiguo/work/gcnn-Faster-rcnn/faster-rcnn.pytorch-pytorch-1.0-1-res50-coco-600-G80/lib/model/faster_rcnn/pretrained_model/model_training_G80.pth' self.dout_base_model = 1792 self.pretrained = pretrained self.class_agnostic = class_agnostic _fasterRCNN.__init__(self, classes, class_agnostic)
def __init__(self, classes, pretrained=False, class_agnostic=False): # 预训练VGG权重 self.model_path = 'data/pretrained_model/vgg16_caffe.pth' # 全图CNN特征通道数 self.dout_base_model = 512 # 是否使用预训练权重 self.pretrained = pretrained # 是否使用类别无关box回归 self.class_agnostic = class_agnostic # 初始化faster-RCNN _fasterRCNN.__init__(self, classes, class_agnostic)
def __init__(self, classes,num_layers=101,base_model ='resnet50', n_segments =8,n_div =8 , place = 'blockres',pretrain = 'imagenet', shift = 'true',class_agnostic = 'false',loss_type = 'sigmoid',pathway='two_pathway'): self.dout_base_model = 1024 self.pretrain = pretrain self.shift = shift self.n_segments = n_segments self.shift_div = n_div self.shift_place = place self.class_agnostic = class_agnostic self.loss_type = loss_type self.pathway =pathway _fasterRCNN.__init__(self, classes, class_agnostic,loss_type,pathway)
def __init__(self, classes, layer , pretrained_path=None, class_agnostic=False, ): self.pretrained_path = pretrained_path self.class_agnostic = class_agnostic self.dout_base_model = 256 self.layer = layer self.dout_lh_base_model = 245 _fasterRCNN.__init__(self, classes, class_agnostic, compact_mode=True)