def __init__(self,
                 step_size=1e-2,
                 batch_size=66,
                 num_iters=100,
                 focal_length=5000,
                 use_lbfgs=True,
                 device=torch.device('cuda'),
                 max_iter=20):

        # Store options
        self.device = device
        self.focal_length = focal_length
        self.step_size = step_size
        self.max_iter = max_iter
        # Ignore the the following joints for the fitting process
        ign_joints = ['OP Neck', 'OP RHip', 'OP LHip', 'Right Hip', 'Left Hip']
        self.ign_joints = [JOINT_IDS[i] for i in ign_joints]
        self.num_iters = num_iters

        # GMM pose prior
        self.pose_prior = MaxMixturePrior(prior_folder=VIBE_DATA_DIR,
                                          num_gaussians=8,
                                          dtype=torch.float32).to(device)
        self.use_lbfgs = use_lbfgs
        # Load SMPL model
        self.smpl = SMPL(SMPL_MODEL_DIR,
                         batch_size=batch_size,
                         create_transl=False).to(self.device)
示例#2
0
文件: spin.py 项目: shikui08/VIBE
    def __init__(self, smpl_mean_params=SMPL_MEAN_PARAMS):
        super(Regressor, self).__init__()

        npose = 24 * 6

        self.fc1 = nn.Linear(512 * 4 + npose + 13, 1024)
        self.drop1 = nn.Dropout()
        self.fc2 = nn.Linear(1024, 1024)
        self.drop2 = nn.Dropout()
        self.decpose = nn.Linear(1024, npose)
        self.decshape = nn.Linear(1024, 10)
        self.deccam = nn.Linear(1024, 3)
        nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
        nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
        nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)

        self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=64, create_transl=False)

        mean_params = np.load(smpl_mean_params)
        init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
        init_shape = torch.from_numpy(
            mean_params['shape'][:].astype('float32')).unsqueeze(0)
        init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
        self.register_buffer('init_pose', init_pose)
        self.register_buffer('init_shape', init_shape)
        self.register_buffer('init_cam', init_cam)
示例#3
0
def compute_error_verts(pred_verts, target_verts=None, target_theta=None):
    """
    Computes MPJPE over 6890 surface vertices.
    Args:
        verts_gt (Nx6890x3).
        verts_pred (Nx6890x3).
    Returns:
        error_verts (N).
    """

    if target_verts is None:
        from lib.models.smpl import SMPL_MODEL_DIR
        from lib.models.smpl import SMPL
        device = 'cpu'
        smpl = SMPL(
            SMPL_MODEL_DIR,
            batch_size=1, # target_theta.shape[0],
        ).to(device)

        betas = torch.from_numpy(target_theta[:,75:]).to(device)
        pose = torch.from_numpy(target_theta[:,3:75]).to(device)

        target_verts = []
        b_ = torch.split(betas, 5000)
        p_ = torch.split(pose, 5000)

        for b,p in zip(b_,p_):
            output = smpl(betas=b, body_pose=p[:, 3:], global_orient=p[:, :3], pose2rot=True)
            target_verts.append(output.vertices.detach().cpu().numpy())

        target_verts = np.concatenate(target_verts, axis=0)

    assert len(pred_verts) == len(target_verts)
    error_per_vert = np.sqrt(np.sum((target_verts - pred_verts) ** 2, axis=2))
    return np.mean(error_per_vert, axis=1)
示例#4
0
文件: spin.py 项目: shikui08/VIBE
    def __init__(self, block, layers, smpl_mean_params):
        self.inplanes = 64
        super(HMR, self).__init__()
        npose = 24 * 6
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc1 = nn.Linear(512 * block.expansion + npose + 13, 1024)
        self.drop1 = nn.Dropout()
        self.fc2 = nn.Linear(1024, 1024)
        self.drop2 = nn.Dropout()
        self.decpose = nn.Linear(1024, npose)
        self.decshape = nn.Linear(1024, 10)
        self.deccam = nn.Linear(1024, 3)
        nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
        nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
        nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)

        self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=64,
                         create_transl=False).to('cpu')

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        mean_params = np.load(smpl_mean_params)
        init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
        init_shape = torch.from_numpy(
            mean_params['shape'][:].astype('float32')).unsqueeze(0)
        init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
        self.register_buffer('init_pose', init_pose)
        self.register_buffer('init_shape', init_shape)
        self.register_buffer('init_cam', init_cam)
def smooth_pose(pred_pose, pred_betas, min_cutoff=0.004, beta=0.7):
    # min_cutoff: Decreasing the minimum cutoff frequency decreases slow speed jitter
    # beta: Increasing the speed coefficient(beta) decreases speed lag.

    one_euro_filter = OneEuroFilter(
        np.zeros_like(pred_pose[0]),
        pred_pose[0],
        min_cutoff=min_cutoff,
        beta=beta,
    )

    smpl = SMPL(model_path=SMPL_MODEL_DIR)

    pred_pose_hat = np.zeros_like(pred_pose)

    # initialize
    pred_pose_hat[0] = pred_pose[0]

    pred_verts_hat = []
    pred_joints3d_hat = []

    smpl_output = smpl(
        betas=torch.from_numpy(pred_betas[0]).unsqueeze(0),
        body_pose=torch.from_numpy(pred_pose[0, 1:]).unsqueeze(0),
        global_orient=torch.from_numpy(pred_pose[0, 0:1]).unsqueeze(0),
    )
    pred_verts_hat.append(smpl_output.vertices.detach().cpu().numpy())
    pred_joints3d_hat.append(smpl_output.joints.detach().cpu().numpy())

    for idx, pose in enumerate(pred_pose[1:]):
        idx += 1

        t = np.ones_like(pose) * idx
        pose = one_euro_filter(t, pose)
        pred_pose_hat[idx] = pose

        smpl_output = smpl(
            betas=torch.from_numpy(pred_betas[idx]).unsqueeze(0),
            body_pose=torch.from_numpy(pred_pose_hat[idx, 1:]).unsqueeze(0),
            global_orient=torch.from_numpy(pred_pose_hat[idx,
                                                         0:1]).unsqueeze(0),
        )
        pred_verts_hat.append(smpl_output.vertices.detach().cpu().numpy())
        pred_joints3d_hat.append(smpl_output.joints.detach().cpu().numpy())

    return np.vstack(pred_verts_hat), pred_pose_hat, np.vstack(
        pred_joints3d_hat)
示例#6
0
    def __init__(
            self,
            vibe,
            cfg = "zen_rec_23"
    ):
        super(REFINERV2, self).__init__()

        vae_cfg = Config(cfg)
        self.vae_model, _, _ = get_models(vae_cfg, iter = -1)
        self.vibe = vibe
        self.vibe.eval()

        self.smpl = SMPL(
            SMPL_MODEL_DIR,
            batch_size=64,
            create_transl=False
        )
示例#7
0
def get_regressor_output(features):
    from lib.models.spin import Regressor

    batch_size, seqlen = features.shape[:2]

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    model = Regressor().to(device)

    smpl = SMPL(SMPL_MODEL_DIR).to(device)
    pretrained = torch.load('models/model_best.pth.tar',
                            map_location=torch.device('cpu'))['gen_state_dict']

    new_pretrained_dict = {}
    for k, v in pretrained.items():
        if 'regressor' in k:
            new_pretrained_dict[k[10:]] = v
            # adapt mean theta to new batch size
            if 'mean_theta' in k:
                del new_pretrained_dict[k[10:]]

    model.load_state_dict(new_pretrained_dict, strict=False)
    features = features.reshape(batch_size * seqlen, -1)
    features = features.to(device)
    theta = model(features)[-1]

    cam = theta[:, 0:3].contiguous()
    pose = theta[:, 3:75].contiguous()
    shape = theta[:, 75:].contiguous()

    pred_output = smpl(betas=shape,
                       body_pose=pose[:, 3:],
                       global_orient=pose[:, :3],
                       pose2rot=True)
    verts = pred_output.vertices  # , _, _ = smpl(pose, shape)

    verts = verts.reshape(batch_size, seqlen, -1, 3)
    cam = cam.reshape(batch_size, seqlen, -1)

    return verts, cam
示例#8
0
def read_data(folder, set, debug=False):

    dataset = {
        'vid_name': [],
        'frame_id': [],
        'joints3D': [],
        'joints2D': [],
        'shape': [],
        'pose': [],
        'bbox': [],
        'img_name': [],
        'features': [],
        'valid': [],
    }

    model = spin.get_pretrained_hmr()

    if set == 'val': set = 'test'
    sequences = [
        x.split('.')[0]
        for x in os.listdir(osp.join(folder, 'sequenceFiles', set))
    ]

    J_regressor = None

    smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False)
    if set == 'test':
        J_regressor = torch.from_numpy(
            np.load(osp.join(VIBE_DATA_DIR, 'J_regressor_h36m.npy'))).float()

    for i, seq in tqdm(enumerate(sequences)):

        data_file = osp.join(folder, 'sequenceFiles', set, seq + '.pkl')

        data = pkl.load(open(data_file, 'rb'), encoding='latin1')

        img_dir = osp.join(folder, 'imageFiles', seq)

        num_people = len(data['poses'])
        num_frames = len(data['img_frame_ids'])
        assert (data['poses2d'][0].shape[0] == num_frames)

        for p_id in range(num_people):
            pose = torch.from_numpy(data['poses'][p_id]).float()
            shape = torch.from_numpy(data['betas'][p_id][:10]).float().repeat(
                pose.size(0), 1)
            trans = torch.from_numpy(data['trans'][p_id]).float()
            j2d = data['poses2d'][p_id].transpose(0, 2, 1)
            cam_pose = data['cam_poses']
            campose_valid = data['campose_valid'][p_id]

            # ======== Align the mesh params ======== #
            rot = pose[:, :3]
            rot_mat = batch_rodrigues(rot)

            Rc = torch.from_numpy(cam_pose[:, :3, :3]).float()
            Rs = torch.bmm(Rc, rot_mat.reshape(-1, 3, 3))
            rot = rotation_matrix_to_angle_axis(Rs)
            pose[:, :3] = rot
            # ======== Align the mesh params ======== #

            output = smpl(betas=shape,
                          body_pose=pose[:, 3:],
                          global_orient=pose[:, :3],
                          transl=trans)
            # verts = output.vertices
            j3d = output.joints

            if J_regressor is not None:
                vertices = output.vertices
                J_regressor_batch = J_regressor[None, :].expand(
                    vertices.shape[0], -1, -1).to(vertices.device)
                j3d = torch.matmul(J_regressor_batch, vertices)
                j3d = j3d[:, H36M_TO_J14, :]

            img_paths = []
            for i_frame in range(num_frames):
                img_path = os.path.join(img_dir +
                                        '/image_{:05d}.jpg'.format(i_frame))
                img_paths.append(img_path)

            bbox_params, time_pt1, time_pt2 = get_smooth_bbox_params(
                j2d, vis_thresh=VIS_THRESH, sigma=8)

            # process bbox_params
            c_x = bbox_params[:, 0]
            c_y = bbox_params[:, 1]
            scale = bbox_params[:, 2]
            w = h = 150. / scale
            w = h = h * 1.1
            bbox = np.vstack([c_x, c_y, w, h]).T

            # process keypoints
            j2d[:, :, 2] = j2d[:, :, 2] > 0.3  # set the visibility flags
            # Convert to common 2d keypoint format
            perm_idxs = get_perm_idxs('3dpw', 'common')
            perm_idxs += [0, 0]  # no neck, top head
            j2d = j2d[:, perm_idxs]
            j2d[:, 12:, 2] = 0.0

            # print('j2d', j2d[time_pt1:time_pt2].shape)
            # print('campose', campose_valid[time_pt1:time_pt2].shape)

            img_paths_array = np.array(img_paths)[time_pt1:time_pt2]
            dataset['vid_name'].append(
                np.array([f'{seq}_{p_id}'] * num_frames)[time_pt1:time_pt2])
            dataset['frame_id'].append(
                np.arange(0, num_frames)[time_pt1:time_pt2])
            dataset['img_name'].append(img_paths_array)
            dataset['joints3D'].append(j3d.numpy()[time_pt1:time_pt2])
            dataset['joints2D'].append(j2d[time_pt1:time_pt2])
            dataset['shape'].append(shape.numpy()[time_pt1:time_pt2])
            dataset['pose'].append(pose.numpy()[time_pt1:time_pt2])
            dataset['bbox'].append(bbox)
            dataset['valid'].append(campose_valid[time_pt1:time_pt2])

            features = extract_features(model,
                                        img_paths_array,
                                        bbox,
                                        kp_2d=j2d[time_pt1:time_pt2],
                                        debug=debug,
                                        dataset='3dpw',
                                        scale=1.2)
            dataset['features'].append(features)

    for k in dataset.keys():
        dataset[k] = np.concatenate(dataset[k])
        print(k, dataset[k].shape)

    # Filter out keypoints
    indices_to_use = np.where(
        (dataset['joints2D'][:, :, 2] > VIS_THRESH).sum(-1) > MIN_KP)[0]
    for k in dataset.keys():
        dataset[k] = dataset[k][indices_to_use]

    return dataset
示例#9
0
def main(args):
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    """ Prepare input video (images) """
    video_file = args.vid_file
    if video_file.startswith('https://www.youtube.com'):
        print(f"Donwloading YouTube video \'{video_file}\'")
        video_file = download_youtube_clip(video_file, '/tmp')
        if video_file is None:
            exit('Youtube url is not valid!')
        print(f"YouTube Video has been downloaded to {video_file}...")

    if not os.path.isfile(video_file):
        exit(f"Input video \'{video_file}\' does not exist!")

    output_path = osp.join('./output/demo_output',
                           os.path.basename(video_file).replace('.mp4', ''))
    Path(output_path).mkdir(parents=True, exist_ok=True)
    image_folder, num_frames, img_shape = video_to_images(video_file,
                                                          return_info=True)

    print(f"Input video number of frames {num_frames}\n")
    orig_height, orig_width = img_shape[:2]
    """ Run tracking """
    total_time = time.time()
    bbox_scale = 1.2
    # run multi object tracker
    mot = MPT(
        device=device,
        batch_size=args.tracker_batch_size,
        display=args.display,
        detector_type=args.detector,
        output_format='dict',
        yolo_img_size=args.yolo_img_size,
    )
    tracking_results = mot(image_folder)

    # remove tracklets if num_frames is less than MIN_NUM_FRAMES
    for person_id in list(tracking_results.keys()):
        if tracking_results[person_id]['frames'].shape[0] < MIN_NUM_FRAMES:
            del tracking_results[person_id]
    """ Get TCMR model """
    seq_len = 16
    model = TCMR(seqlen=seq_len, n_layers=2, hidden_size=1024).to(device)

    # Load pretrained weights
    pretrained_file = args.model
    ckpt = torch.load(pretrained_file)
    print(f"Load pretrained weights from \'{pretrained_file}\'")
    ckpt = ckpt['gen_state_dict']
    model.load_state_dict(ckpt, strict=False)

    # Change mesh gender
    gender = args.gender  # 'neutral', 'male', 'female'
    model.regressor.smpl = SMPL(SMPL_MODEL_DIR,
                                batch_size=64,
                                create_transl=False,
                                gender=gender).cuda()

    model.eval()

    # Get feature_extractor
    from lib.models.spin import hmr
    hmr = hmr().to(device)
    checkpoint = torch.load(
        osp.join(BASE_DATA_DIR, 'spin_model_checkpoint.pth.tar'))
    hmr.load_state_dict(checkpoint['model'], strict=False)
    hmr.eval()
    """ Run TCMR on each person """
    print("\nRunning TCMR on each person tracklet...")
    tcmr_time = time.time()
    tcmr_results = {}
    for person_id in tqdm(list(tracking_results.keys())):
        bboxes = joints2d = None
        bboxes = tracking_results[person_id]['bbox']
        frames = tracking_results[person_id]['frames']

        # Prepare static image features
        dataset = CropDataset(
            image_folder=image_folder,
            frames=frames,
            bboxes=bboxes,
            joints2d=joints2d,
            scale=bbox_scale,
        )

        bboxes = dataset.bboxes
        frames = dataset.frames
        has_keypoints = True if joints2d is not None else False

        crop_dataloader = DataLoader(dataset, batch_size=256, num_workers=16)

        with torch.no_grad():
            feature_list = []
            for i, batch in enumerate(crop_dataloader):
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.to(device)
                feature = hmr.feature_extractor(batch.reshape(-1, 3, 224, 224))
                feature_list.append(feature.cpu())

            del batch

            feature_list = torch.cat(feature_list, dim=0)

        # Encode temporal features and estimate 3D human mesh
        dataset = FeatureDataset(
            image_folder=image_folder,
            frames=frames,
            seq_len=seq_len,
        )
        dataset.feature_list = feature_list

        dataloader = DataLoader(dataset, batch_size=64, num_workers=32)
        with torch.no_grad():
            pred_cam, pred_verts, pred_pose, pred_betas, pred_joints3d, norm_joints2d = [], [], [], [], [], []

            for i, batch in enumerate(dataloader):
                if has_keypoints:
                    batch, nj2d = batch
                    norm_joints2d.append(nj2d.numpy().reshape(-1, 21, 3))

                batch = batch.to(device)
                output = model(batch)[0][-1]

                pred_cam.append(output['theta'][:, :3])
                pred_verts.append(output['verts'])
                pred_pose.append(output['theta'][:, 3:75])
                pred_betas.append(output['theta'][:, 75:])
                pred_joints3d.append(output['kp_3d'])

            pred_cam = torch.cat(pred_cam, dim=0)
            pred_verts = torch.cat(pred_verts, dim=0)
            pred_pose = torch.cat(pred_pose, dim=0)
            pred_betas = torch.cat(pred_betas, dim=0)
            pred_joints3d = torch.cat(pred_joints3d, dim=0)

            del batch

        # ========= Save results to a pickle file ========= #
        pred_cam = pred_cam.cpu().numpy()
        pred_verts = pred_verts.cpu().numpy()
        pred_pose = pred_pose.cpu().numpy()
        pred_betas = pred_betas.cpu().numpy()
        pred_joints3d = pred_joints3d.cpu().numpy()

        bboxes[:, 2:] = bboxes[:, 2:] * 1.2
        if args.render_plain:
            pred_cam[:, 0], pred_cam[:, 1:] = 1, 0  # np.array([[1, 0, 0]])
        orig_cam = convert_crop_cam_to_orig_img(cam=pred_cam,
                                                bbox=bboxes,
                                                img_width=orig_width,
                                                img_height=orig_height)

        output_dict = {
            'pred_cam': pred_cam,
            'orig_cam': orig_cam,
            'verts': pred_verts,
            'pose': pred_pose,
            'betas': pred_betas,
            'joints3d': pred_joints3d,
            'joints2d': joints2d,
            'bboxes': bboxes,
            'frame_ids': frames,
        }

        tcmr_results[person_id] = output_dict

    del model

    end = time.time()
    fps = num_frames / (end - tcmr_time)
    print(f'TCMR FPS: {fps:.2f}')
    total_time = time.time() - total_time
    print(
        f'Total time spent: {total_time:.2f} seconds (including model loading time).'
    )
    print(
        f'Total FPS (including model loading time): {num_frames / total_time:.2f}.'
    )

    if args.save_pkl:
        print(
            f"Saving output results to \'{os.path.join(output_path, 'tcmr_output.pkl')}\'."
        )
        joblib.dump(tcmr_results, os.path.join(output_path, "tcmr_output.pkl"))
    """ Render results as a single video """
    renderer = Renderer(resolution=(orig_width, orig_height),
                        orig_img=True,
                        wireframe=args.wireframe)

    output_img_folder = f'{image_folder}_output'
    input_img_folder = f'{image_folder}_input'
    os.makedirs(output_img_folder, exist_ok=True)
    os.makedirs(input_img_folder, exist_ok=True)

    print(f"\nRendering output video, writing frames to {output_img_folder}")
    # prepare results for rendering
    frame_results = prepare_rendering_results(tcmr_results, num_frames)
    mesh_color = {
        k: colorsys.hsv_to_rgb(np.random.rand(), 0.5, 1.0)
        for k in tcmr_results.keys()
    }

    image_file_names = sorted([
        os.path.join(image_folder, x) for x in os.listdir(image_folder)
        if x.endswith('.png') or x.endswith('.jpg')
    ])

    for frame_idx in tqdm(range(len(image_file_names))):
        img_fname = image_file_names[frame_idx]
        img = cv2.imread(img_fname)
        input_img = img.copy()
        if args.render_plain:
            img[:] = 0

        if args.sideview:
            side_img = np.zeros_like(img)

        for person_id, person_data in frame_results[frame_idx].items():
            frame_verts = person_data['verts']
            frame_cam = person_data['cam']

            mesh_filename = None
            if args.save_obj:
                mesh_folder = os.path.join(output_path, 'meshes',
                                           f'{person_id:04d}')
                Path(mesh_folder).mkdir(parents=True, exist_ok=True)
                mesh_filename = os.path.join(mesh_folder,
                                             f'{frame_idx:06d}.obj')

            mc = mesh_color[person_id]

            img = renderer.render(
                img,
                frame_verts,
                cam=frame_cam,
                color=mc,
                mesh_filename=mesh_filename,
            )
            if args.sideview:
                side_img = renderer.render(
                    side_img,
                    frame_verts,
                    cam=frame_cam,
                    color=mc,
                    angle=270,
                    axis=[0, 1, 0],
                )

        if args.sideview:
            img = np.concatenate([img, side_img], axis=1)

        # save output frames
        cv2.imwrite(os.path.join(output_img_folder, f'{frame_idx:06d}.jpg'),
                    img)
        cv2.imwrite(os.path.join(input_img_folder, f'{frame_idx:06d}.jpg'),
                    input_img)

        if args.display:
            cv2.imshow('Video', img)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    if args.display:
        cv2.destroyAllWindows()
    """ Save rendered video """
    vid_name = os.path.basename(video_file)
    save_name = f'tcmr_{vid_name.replace(".mp4", "")}_output.mp4'
    save_path = os.path.join(output_path, save_name)

    images_to_video(img_folder=output_img_folder, output_vid_file=save_path)
    images_to_video(img_folder=input_img_folder,
                    output_vid_file=os.path.join(output_path, vid_name))
    print(f"Saving result video to {os.path.abspath(save_path)}")
    shutil.rmtree(output_img_folder)
    shutil.rmtree(input_img_folder)
    shutil.rmtree(image_folder)
from lib.utils.vis import batch_draw_skeleton, batch_visualize_preds

dataset = 'MPII3D'
seqlen = 16
DEBUG = True

db = eval(dataset)(set='val', seqlen=seqlen, debug=DEBUG)

dataloader = DataLoader(
    dataset=db,
    batch_size=4,
    shuffle=True,
    num_workers=1,
)

smpl = SMPL(SMPL_MODEL_DIR)

start = time.time()
for i, target in enumerate(dataloader):
    data_time = time.time() - start
    start = time.time()
    print(f'Data loading time {data_time:.4f}')

    for k, v in target.items():
        print(k, v.shape)

    if DEBUG:
        input = target['video'][0]
        single_target = {k: v[0] for k, v in target.items()}

        if dataset == 'MPII3D':
示例#11
0
    ).to(cfg.DEVICE)

    if cfg.TRAIN.PRETRAINED != '' and os.path.isfile(cfg.TRAIN.PRETRAINED):
        checkpoint = torch.load(cfg.TRAIN.PRETRAINED)
        best_performance = checkpoint['performance']
        model.load_state_dict(checkpoint['gen_state_dict'])

        print(f'==> Loaded pretrained model from {cfg.TRAIN.PRETRAINED}...')
        print(f'Performance on 3DPW test set {best_performance}')
    else:
        print(f'{cfg.TRAIN.PRETRAINED} is not a pretrained model!!!!')
        exit()

    dtype = torch.float
    smpl = SMPL(SMPL_MODEL_DIR,
                batch_size=50,
                create_transl=False,
                dtype=dtype).to(cfg.DEVICE)

    J_regressor = torch.from_numpy(
        np.load(osp.join(VIBE_DATA_DIR, 'J_regressor_h36m.npy'))).float()
    t_total = 16

    ################## 3dpw ##################
    dataset_setting = "test"
    dataset_3dpw = joblib.load(
        "/hdd/zen/data/video_pose/vibe_db/3dpw_{}_db.pt".format(
            dataset_setting))
    vid_names = dataset_3dpw['vid_name']
    thetas = dataset_3dpw['pose']
    features = dataset_3dpw['features']
    j3ds = dataset_3dpw['joints3D']