示例#1
0
def plot_dragonpoint(ax1,_dfquotes,beginindex,targetprices,_imulti=40):
    """
    plot k graph with line of targetprices
    Args:
        _dfquotes (dataframe): the seurity dataframe which include'openPrice''closePrice''highestPrice''lowestPrice''tradeDate'
        ax1 : matplotlib ax object
        beginindex : the index of first k bar, _dfquotes[begin:] will be plot
        _locatormulti (int): adjust the axis's ticker display interval
    Returns:
        none

    Examples:
        >> 
    """
    global gdfquotes
    gdfquotes = _dfquotes
    plot_security_k(ax1,gdfquotes,beginindex,_locatormulti=_imulti)
    ax2 = ax1.twinx()
    ax2.set_ylim(ax1.get_ylim())
    ax2.yaxis.set_major_formatter(ticker.FuncFormatter(format_percentage))
    _zero = gdfquotes['closePrice'].iloc[-1]
    x1 = range(0,len(gdfquotes)-beginindex+1,len(gdfquotes)-beginindex)
    for _p in targetprices:
        y1 = [_p for n in x1]
        _percen = mymath.rod(_p/_zero-1,4)*100
        if _percen < 0 and _percen > -11:
            ax1.plot(x1,y1,'m--')
            ax1.text(targetprices.index(_p)*3,_p,'%.2f(%.2f%%)'%(mymath.rod(_p,2),_percen),rotation=90,va='bottom',color='m')
        else:
            ax1.plot(x1,y1,'b-')
            ax1.text(targetprices.index(_p)*3,_p,'%.2f(%.2f%%)'%(mymath.rod(_p,2),_percen),rotation=90,va='bottom')
        plt.minorticks_on()
    pass
示例#2
0
def ztnum(_his,s,_Divhis=[]):
    if len(_Divhis) == 0:
        _Divhis = DataAPI.EquDivGet(secID=s,eventProcessCD='6',field=['exDivDate','perShareDivRatio','perShareTransRatio','perCashDiv'],pandas="1")
    _Divdate = '0000-00-00'
    for _date in _Divhis.exDivDate:
        if _date >= _his['tradeDate'].iloc[0] and _date <= _his['tradeDate'].iloc[-1]:
            _Divdate = _date#只考虑区间内有一次除权
            break      
    i = 0
    zt = 0
    _closep = 0
    while True:
        #除权单天的开盘价除权
        if _his['tradeDate'].iloc[i+1] == _Divdate:
            _closep = msum.AdjP(_Divhis,_Divdate,_his['closePrice'].iloc[i])
        else:
            _closep = _his['closePrice'].iloc[i]
        if _his['closePrice'].iloc[i+1] == mymath.rod(_closep*1.1,2):
            zt = zt + 1
            #除权日前涨停价格除权
            '''
            if previousztdate < _Divdate and _his['tradeDate'].iloc[i+1] >= _Divdate:
                previouszt = msum.AdjP(_Divhis,_Divdate,previouszt)
                print '除权后 previouszt',previouszt
            if _his['closePrice'].iloc[i+1] >= previouszt:
                zt = zt + 1
                previouszt = _his['closePrice'].iloc[i+1]
                previousztdate = _his['tradeDate'].iloc[i+1]
            '''
        i = i + 1
        if i > len(_his)-2:
            break
    return zt
示例#3
0
def canbuy(_dayTran, _Divdate):
    #除权单天的开盘价除权
    if _dayTran['tradeDate'] == _Divdate:
        _closep = AdjP(_Divhis, _Divdate, _dayTran['actPreClosePrice'])
    else:
        _closep = _dayTran['actPreClosePrice']

    #T 天开盘价是否小于涨停价
    if _dayTran['openPrice'] < mymath.rod(_closep * 1.1, 2):
        bcanbuy = True
        targetprice = _dayTran['openPrice'] * _dayTran['accumAdjFactor']
        return bcanbuy, targetprice
    return False, 0
示例#4
0
文件: lib.selstock.py 项目: fswzb/MT
def ztcs(data):
    data = data.tolist()
    data = [round(e, 2) for e in data]
    if len(data) < 2:
        return 0
    i = 0
    zt = 0
    previouszt = 0
    while True:
        if (data[i + 1] == mymath.rod(data[i] * 1.1, 2)
                and data[i + 1] >= previouszt):
            zt = zt + 1
            previouszt = data[i + 1]
        i = i + 1
        if i > len(data) - 2:
            break
    return zt
示例#5
0
def howmanyzt(_his, _Divdate, bzszt=False, turnrate=0.03):
    bzt_T = False
    #不除权历史数据
    _his = _his.set_index('tradeDate')
    #计算区间内涨停情况
    i = 0
    zt = 0
    previouszt = 0
    _closep = 0
    previousztdate = '0000-00-00'
    while True:
        #除权单天的开盘价除权
        if _his.index[i + 1] == _Divdate:
            _closep = AdjP(_Divhis, _Divdate, _his['closePrice'].iloc[i])
        else:
            _closep = _his['closePrice'].iloc[i]

        if _his['closePrice'].iloc[i + 1] == mymath.rod(_closep * 1.1, 2):
            #T 天是否涨停
            if i == len(_his) - 2:
                if bzszt == False:
                    bzt_T = True
                elif _his['turnoverRate'].iloc[
                        i + 1] >= turnrate or _his['openPrice'].iloc[
                            i + 1] != _his['closePrice'].iloc[i + 1]:
                    bzt_T = True

            #除权日前涨停价格除权
            if previousztdate < _Divdate and _his.index[i + 1] >= _Divdate:
                previouszt = AdjP(_Divhis, _Divdate, previouszt)
            if _his['closePrice'].iloc[i + 1] >= previouszt:
                zt = zt + 1
                previouszt = _his['closePrice'].iloc[i + 1]
                previousztdate = _his.index[i + 1]
        i = i + 1
        if i > len(_his) - 2:
            break
    return zt, bzt_T
示例#6
0
print start,now
for s in universe:
    #非复权历史数据
    _his = DataAPI.MktEqudGet(beginDate=start,endDate=now,secID=s,isOpen=1,field=['tradeDate','closePrice','openPrice','highestPrice','lowestPrice','accumAdjFactor','actPreClosePrice','turnoverRate'],pandas='1')
    #历史除权信息
    _Divhis = DataAPI.EquDivGet(secID=s,eventProcessCD='6',field=['exDivDate','perShareDivRatio','perShareTransRatio','perCashDiv'],pandas="1")
    value = []
    #遍历历史数据
    for id in range(20,len(_his)):
        g_currentdate = _his['tradeDate'].iloc[id]
        if g_currentdate < continueday:
            continue
        accumAdjFactor = _his['accumAdjFactor'].iloc[id]
        #买入
        if len(value) > 0 and boughtbefore(s,g_currentdate,_his[id-20:id+1],g_imaxback+2):
            targetprice = mymath.rod(value[g_targetprice],2)
            _lowestprice = mymath.rod(_his['lowestPrice'].iloc[id]*accumAdjFactor,2)
            if targetprice >= _lowestprice:
                _openprice = mymath.rod(_his['openPrice'].iloc[id]*accumAdjFactor,2)
                _val =[g_currentdate,s,min(targetprice,_openprice)]
                i = len(g_security_return_value)*g_imaxback
                while i > 0:
                    _val.append(0.)
                    i = i - 1
                g_security_history[len(g_security_history)] = _val
        #计算之前买入股票目前收益
        #1.当天卖出的盈利概率 2.当天卖出的盈利百分比 
        i = len(g_security_history) - 1
        while i >0:
            v = g_security_history[i]
            if v[0] == g_currentdate or v[1] != s:#ignore the current day and not the same stock
示例#7
0
def format_percentage(y,pos=None):
    global dfquotes
    _ticklabel = mymath.rod(y/dfquotes['closePrice'].iloc[-1]-1,3)
    _per = '%.2f%%'%(_ticklabel*100)
    return _per
示例#8
0
def lxztordt(gc, tradedate, zt=True, turnrate=0.03):
    """
    给定股票代码列表,计算连板数
    Args:
        gc (list): 需要计算连板的股票代码列表
        tradedate (string):计算时间
        turnrate (float):一字板确认真实涨停换手率标准
        zt (bool):计算涨停还是跌停
    Returns:
        dict (dictionary):key是连板数量,value是[[ticker,turnoverrate],[ticker,turnoverrate]....]

    Examples:
        >> lxztordt(['000425','600307','002307','000877'],'20170210')
        >> lxztordt(['000425.XSHE','600307.XSHG','002307','000877'],'20170210')
    """
    _his = []
    _conbandict = {}
    for s in gc:
        _continuebang = 0
        _continueturn = 0
        if s.find('.') >= 0:
            _his = DataAPI.MktEqudGet(endDate=tradedate,
                                      secID=s,
                                      field=[
                                          'tradeDate', 'secShortName',
                                          'lowestPrice', 'closePrice',
                                          'turnoverRate'
                                      ],
                                      isOpen=1,
                                      pandas='1')
        else:
            _his = DataAPI.MktEqudGet(endDate=tradedate,
                                      ticker=s,
                                      field=[
                                          'tradeDate', 'secShortName',
                                          'lowestPrice', 'closePrice',
                                          'turnoverRate'
                                      ],
                                      isOpen=1,
                                      pandas='1')
        Divhis = DataAPI.EquDivGet(secID=s,
                                   eventProcessCD='6',
                                   field=[
                                       'exDivDate', 'perShareDivRatio',
                                       'perShareTransRatio', 'perCashDiv'
                                   ],
                                   pandas="1")
        indexreverse = range(-1, -len(_his), -1)
        for ind in indexreverse:
            if (_his['secShortName'].iloc[ind].find('S') >= 0):
                if zt:
                    maxinc = 1.05
                else:
                    maxinc = 0.95
            else:
                if zt:
                    maxinc = 1.1
                else:
                    maxinc = 0.9
            if ind > indexreverse[-1]:
                _preclose = AdjP(Divhis, _his['tradeDate'].iloc[ind],
                                 _his['closePrice'].iloc[ind - 1])
                if _his['closePrice'].iloc[ind] == mymath.rod(
                        _preclose * maxinc, 2):
                    _continuebang = _continuebang + 1
                    _continueturn = _continueturn + _his['turnoverRate'].iloc[
                        ind]
                    #如果是统计涨停,则需要检查是不是真实涨停,如果不是就不统计连板数
                    if zt and _his['lowestPrice'].iloc[ind] == _his[
                            'closePrice'].iloc[ind] and _his[
                                'turnoverRate'].iloc[ind] < turnrate:
                        _continuebang = _continuebang - 1
                        break
                else:
                    break  #next security
        if _continuebang == 0:
            continue
        #store to the dict
        if _continuebang in _conbandict:
            _conbandict[_continuebang].append([s, _continueturn])
        else:
            _conbandict[_continuebang] = [[s, _continueturn]]
    return _conbandict
示例#9
0
def handle_data(account):  #在每个交易日开盘之前运行,用来执行策略,判断交易指令下达的时机和细节
    global g_vardic
    global ticks
    global g_security_history
    global g_currentdate
    ticks = ticks % g_ifreq
    if ticks == 0:
        g_currentdate = account.current_date.strftime('%Y%m%d')
    for k, v in g_security_history.items():
        if k == 0 or g_vardic[k]['checked']:
            continue
        if ticks == 0:
            df = DataAPI.MktEqudAdjGet(
                beginDate=v[0],
                endDate=g_currentdate,
                secID=v[1],
                field=['closePrice', 'highestPrice', 'lowestPrice'],
                isOpen='1',
                pandas='1')
            g_vardic[k]['before'] = len(df)
            if g_vardic[k]['before'] == 2:
                g_vardic[k]['closeprice'] = df['closePrice'].iloc[0]
                g_vardic[k]['highestprice'] = df['highestPrice'].iloc[-1]
                g_vardic[k]['lowestprice'] = df['lowestPrice'].iloc[-1]
        if g_vardic[k]['before'] != 2:
            continue  #only T+1 day
        g_vardic[k]['fenshi'].append(account.reference_price[v[1]])
        if ticks == 239:
            plt.title(v[1] + v[0])
            plt.plot(g_vardic[k]['fenshi'] / g_vardic[k]['closeprice'] - 1,
                     'y-')
            lips = g_vardic[k]['soldpoint'] / g_vardic[k]['closeprice'] - 1
            plt.plot(g_vardic[k]['soldticks'], lips, 'go')
            plt.grid()
            plt.xlim(0, 239)
            plt.xticks(range(0, 240, 30))
            ymax = max(
                abs(g_vardic[k]['highestprice'] / g_vardic[k]['closeprice'] -
                    1),
                abs(g_vardic[k]['lowestprice'] / g_vardic[k]['closeprice'] -
                    1))
            plt.ylim(-ymax, ymax)
            plt.show()
            g_vardic[k]['checked'] = True

        if g_vardic[k]['unit'] <= 0:
            continue
        if len(g_vardic[k]['fenshi']) <= 1:
            _price_1 = g_vardic[k]['fenshi'][0]
        else:
            _price_1 = g_vardic[k]['fenshi'][-2]

        if g_vardic[k]['fenshi'][0]/g_vardic[k]['closeprice']-1 >= jump\
            and g_vardic[k]['fenshi'][-1] < _price_1:
            g_vardic[k]['soldpoint'].append(g_vardic[k]['fenshi'][-1])
            g_vardic[k]['soldticks'].append(ticks)
            g_vardic[k]['unit'] = g_vardic[k]['unit'] - 1
        if mymath.rod(g_vardic[k]['fenshi'][-1],2) == mymath.rod(g_vardic[k]['closeprice']*1.1,2)\
        or ticks == 239:
            while g_vardic[k]['unit'] > 0:
                g_vardic[k]['soldpoint'].append(g_vardic[k]['fenshi'][-1])
                g_vardic[k]['soldticks'].append(ticks)
                g_vardic[k]['unit'] = g_vardic[k]['unit'] - 1

    ticks = ticks + 1
    return