示例#1
0
def train(loader,
          model,
          optimizer,
          exp_logger,
          epoch,
          train_all,
          print_freq=100,
          clip_gradient=True,
          iter_size=1):

    model.train()
    meters = exp_logger.reset_meters('train')
    end = time.time()

    for i, sample in enumerate(
            loader):  # (im_data, im_info, gt_objects, gt_relationships)
        # measure the data loading time
        batch_size = len(sample['visual'])
        # measure data loading time
        meters['data_time'].update(time.time() - end, n=batch_size)

        input_visual = [item for item in sample['visual']]
        target_objects = sample['objects']
        target_relations = sample['relations']
        image_info = sample['image_info']
        # RPN targets
        rpn_anchor_targets_obj = [[
            np_to_variable(item[0], is_cuda=False, dtype=torch.LongTensor),
            np_to_variable(item[1], is_cuda=False),
            np_to_variable(item[2], is_cuda=False),
            np_to_variable(item[3], is_cuda=False)
        ] for item in sample['rpn_targets']['object']]

        # compute output
        try:
            raw_losses = model(im_data=input_visual,
                               im_info=image_info,
                               gt_objects=target_objects,
                               gt_relationships=target_relations,
                               rpn_anchor_targets_obj=rpn_anchor_targets_obj)

            # Determine the loss function
            def merge_losses(losses):
                for key in losses:
                    if isinstance(losses[key], dict) or isinstance(
                            losses[key], list):
                        losses[key] = merge_losses(losses[key])
                    elif key.startswith('loss'):
                        losses[key] = losses[key].mean()
                return losses

            losses = merge_losses(raw_losses)
            if train_all:
                loss = losses['loss'] + losses['rpn']['loss'] * 0.5
            else:
                loss = losses['loss']
            # to logging the loss and itermediate values
            meters['loss'].update(losses['loss'].cpu().item(), n=batch_size)
            meters['loss_cls_obj'].update(losses['loss_cls_obj'].cpu().item(),
                                          n=batch_size)
            meters['loss_reg_obj'].update(losses['loss_reg_obj'].cpu().item(),
                                          n=batch_size)
            meters['loss_cls_rel'].update(losses['loss_cls_rel'].cpu().item(),
                                          n=batch_size)
            meters['loss_rpn'].update(losses['rpn']['loss'].cpu().item(),
                                      n=batch_size)
            meters['batch_time'].update(time.time() - end, n=batch_size)
            meters['epoch_time'].update(meters['batch_time'].val, n=batch_size)

            # add support for iter size
            # special case: last iterations
            optimizer.zero_grad()
            loss.backward()
            if clip_gradient:
                network.clip_gradient(model, 10.)
            else:
                network.avg_gradient(model, iter_size)
            optimizer.step()

        except:
            import pdb
            pdb.set_trace()
            print("Error: [{}]".format(i))
        end = time.time()
        # Logging the training loss
        if (i + 1) % print_freq == 0:
            print('Epoch: [{0}][{1}/{2}] '
                  'Batch_Time: {batch_time.avg: .3f}\t'
                  'FRCNN Loss: {loss.avg: .4f}\t'
                  'RPN Loss: {rpn_loss.avg: .4f}\t'.format(
                      epoch,
                      i + 1,
                      len(loader),
                      batch_time=meters['batch_time'],
                      loss=meters['loss'],
                      rpn_loss=meters['loss_rpn']))

            print('\t[object] loss_cls_obj: {loss_cls_obj.avg:.4f} '
                  'loss_reg_obj: {loss_reg_obj.avg:.4f} '
                  'loss_cls_rel: {loss_cls_rel.avg:.4f} '.format(
                      loss_cls_obj=meters['loss_cls_obj'],
                      loss_reg_obj=meters['loss_reg_obj'],
                      loss_cls_rel=meters['loss_cls_rel'],
                  ))

    exp_logger.log_meters('train', n=epoch)
示例#2
0
def train(loader,
          model,
          optimizer,
          exp_logger,
          epoch,
          train_all,
          print_freq=100,
          clip_gradient=True,
          iter_size=1):

    model.train()
    meters = exp_logger.reset_meters('train')
    end = time.time()

    for i, sample in enumerate(
            loader):  # (im_data, im_info, gt_objects, gt_relationships)
        # measure the data loading time
        batch_size = sample['visual'].size(0)

        # measure data loading time
        meters['data_time'].update(time.time() - end, n=batch_size)

        input_visual = Variable(sample['visual'].cuda())
        target_objects = sample['objects']
        target_relations = sample['relations']
        image_info = sample['image_info']
        # RPN targets
        rpn_anchor_targets_obj = [
            np_to_variable(sample['rpn_targets']['object'][0],
                           is_cuda=True,
                           dtype=torch.LongTensor),
            np_to_variable(sample['rpn_targets']['object'][1], is_cuda=True),
            np_to_variable(sample['rpn_targets']['object'][2], is_cuda=True),
            np_to_variable(sample['rpn_targets']['object'][3], is_cuda=True)
        ]
        try:
            # compute output
            model(input_visual, image_info, target_objects, target_relations,
                  rpn_anchor_targets_obj)
            # Determine the loss function
            if train_all:
                loss = model.loss + model.rpn.loss * 0.5
            else:
                loss = model.loss

            # to logging the loss and itermediate values
            meters['loss'].update(model.loss.data.cpu().numpy()[0],
                                  n=batch_size)
            meters['loss_cls_obj'].update(
                model.loss_cls_obj.data.cpu().numpy()[0], n=batch_size)
            meters['loss_reg_obj'].update(
                model.loss_reg_obj.data.cpu().numpy()[0], n=batch_size)
            meters['loss_cls_rel'].update(
                model.loss_cls_rel.data.cpu().numpy()[0], n=batch_size)
            meters['loss_rpn'].update(model.rpn.loss.data.cpu().numpy()[0],
                                      n=batch_size)
            meters['batch_time'].update(time.time() - end, n=batch_size)
            meters['epoch_time'].update(meters['batch_time'].val, n=batch_size)

            # add support for iter size
            # special case: last iterations
            if i % iter_size == 0 or i == len(loader) - 1:
                loss.backward()
                if clip_gradient:
                    network.clip_gradient(model, 10.)
                else:
                    network.avg_gradient(model, iter_size)
                optimizer.step()
                optimizer.zero_grad()
            else:
                loss.backward()

            end = time.time()
            # Logging the training loss
            if (i + 1) % print_freq == 0:
                print(
                    'Epoch: [{0}][{1}/{2}] '
                    'Batch_Time: {batch_time.avg: .3f}\t'
                    'FRCNN Loss: {loss.avg: .4f}\t'
                    'RPN Loss: {rpn_loss.avg: .4f}\t'.format(
                        epoch,
                        i + 1,
                        len(loader),
                        batch_time=meters['batch_time'],
                        loss=meters['loss'],
                        rpn_loss=meters['loss_rpn']))

                print(
                    '\t[object] loss_cls_obj: {loss_cls_obj.avg:.4f} '
                    'loss_reg_obj: {loss_reg_obj.avg:.4f} '
                    'loss_cls_rel: {loss_cls_rel.avg:.4f} '.format(
                        loss_cls_obj=meters['loss_cls_obj'],
                        loss_reg_obj=meters['loss_reg_obj'],
                        loss_cls_rel=meters['loss_cls_rel'],
                    ))
        except Exception:
            pdb.set_trace()

    exp_logger.log_meters('train', n=epoch)