""" bias field correction to epi """ for i in range(len(path_epi)): n4 = N4BiasFieldCorrection() n4.inputs.dimension = 3 n4.inputs.input_image = os.path.join(path_epi[i], "epi.nii") n4.inputs.bias_image = os.path.join(path_epi[i], 'n4bias.nii') n4.inputs.output_image = os.path.join(path_epi[i], "bepi.nii") n4.run() """ clean ana """ for i in range(len(path_t1)): clean_ana(os.path.join(path_t1[i], "T1.nii"), 1000.0, 4095.0, overwrite=True) """ mask t1 and epi """ for i in range(len(path_t1)): mask_ana(os.path.join(path_t1[i], "T1.nii"), os.path.join(path_t1[i], "mask.nii"), background_bright=False) for i in range(len(path_epi)): mask_epi(os.path.join(path_epi[i], "bepi.nii"), os.path.join(path_t1[i], "pT1.nii"), os.path.join(path_t1[i], "mask.nii"), niter_mask, sigma_mask, file_cmap) """
os.makedirs(path_temp) # copy input files into temporary folder sh.copyfile(input_t1[i], os.path.join(path_temp,"T1"+ext_t1)) sh.copyfile(input_mask[i], os.path.join(path_temp,"mask"+ext_mask)) # get mean time series get_mean(input_epi[i], path_temp, "epi", type="mean") # new filenames file_epi_mean = os.path.join(path_temp, "mean_epi"+ext_epi) file_t1 = os.path.join(path_temp,"T1"+ext_t1) file_mask = os.path.join(path_temp,"mask"+ext_mask) # get mask clean_ana(file_t1, 1000.0, 4095.0, overwrite=True) # clean ana mask_ana(file_t1, file_mask, background_bright=False) # mask t1 mask_epi(file_epi_mean, os.path.join(path_temp,"pT1"+ext_t1), file_mask, niter_mask, sigma_mask) # get outlier count within mask os.system("3dToutcount " + \ "-mask " + os.path.join(path_temp,"mask_def-img3.nii.gz") + " " + \ "-fraction " + \ "-qthr " +str(qthr) + " " + input_epi[i] + " " + \ " > " + os.path.join(path_output,"outlier_afni.txt")) # make plot log_data = np.loadtxt(os.path.join(path_output,"outlier_afni.txt")) # plots fig, ax = plt.subplots()