dbname=dbname, sal_input=conf.sal_input, use_depth=conf.use_depth, has_grad=conf.has_grad, use_dist=conf.use_dist, return_forest=conf.test_forest, need_caption=conf.captioning, gcn_caption=conf.gcn_captioning, ) detector.cuda() ckpt = torch.load(conf.ckpt) optimistic_restore(detector, ckpt['state_dict']) for n, param in detector.named_parameters(): param.requires_grad = False detector.eval() print(print_para(detector), flush=True) ########################################################################## def get_optim(model, lr): params = model.parameters() optimizer = optim.Adam(params, weight_decay=0, lr=lr) return optimizer def to_contiguous(tensor): if tensor.is_contiguous(): return tensor
def main(): args = 'X -m predcls -model motifnet -order leftright -nl_obj 2 -nl_edge 4 -b 6 -clip 5 -p 100 -hidden_dim 512 -pooling_dim 4096 -lr 1e-3 -ngpu 1 -test -ckpt checkpoints/vgrel-motifnet-sgcls.tar -nepoch 50 -use_bias -multipred -cache motifnet_predcls1' sys.argv = args.split(' ') conf = ModelConfig() if conf.model == 'motifnet': from lib.rel_model import RelModel elif conf.model == 'stanford': from lib.rel_model_stanford import RelModelStanford as RelModel else: raise ValueError() train, val, test = VG.splits( num_val_im=conf.val_size, filter_duplicate_rels=True, use_proposals=conf.use_proposals, filter_non_overlap=conf.mode == 'sgdet', ) if conf.test: val = test train_loader, val_loader = VGDataLoader.splits( train, val, mode='rel', batch_size=conf.batch_size, num_workers=conf.num_workers, num_gpus=conf.num_gpus ) detector = RelModel( classes=train.ind_to_classes, rel_classes=train.ind_to_predicates, num_gpus=conf.num_gpus, mode=conf.mode, require_overlap_det=True, use_resnet=conf.use_resnet, order=conf.order, nl_edge=conf.nl_edge, nl_obj=conf.nl_obj, hidden_dim=conf.hidden_dim, use_proposals=conf.use_proposals, pass_in_obj_feats_to_decoder=conf.pass_in_obj_feats_to_decoder, pass_in_obj_feats_to_edge=conf.pass_in_obj_feats_to_edge, pooling_dim=conf.pooling_dim, rec_dropout=conf.rec_dropout, use_bias=conf.use_bias, use_tanh=conf.use_tanh, limit_vision=conf.limit_vision ) detector.cuda() ckpt = torch.load(conf.ckpt) optimistic_restore(detector, ckpt['state_dict']) evaluator = BasicSceneGraphEvaluator.all_modes( multiple_preds=conf.multi_pred) mode, N = 'test.multi_pred', 20 recs = pkl.load(open('{}.{}.pkl'.format(mode, N), 'rb')) np.random.seed(0) # sorted_idxs = np.argsort(recs) selected_idxs = np.random.choice(range(len(recs)), size=100, replace=False) sorted_idxs = selected_idxs[np.argsort(np.array(recs)[selected_idxs])] print('Sorted idxs: {}'.format(sorted_idxs.tolist())) save_dir = '/nethome/bamos/2018-intel/data/2018-07-31/sgs.multi' for idx in selected_idxs: gt_entry = { 'gt_classes': val.gt_classes[idx].copy(), 'gt_relations': val.relationships[idx].copy(), 'gt_boxes': val.gt_boxes[idx].copy(), } detector.eval() det_res = detector[vg_collate([test[idx]], num_gpus=1)] boxes_i, objs_i, obj_scores_i, rels_i, pred_scores_i = det_res pred_entry = { 'pred_boxes': boxes_i * BOX_SCALE/IM_SCALE, 'pred_classes': objs_i, 'pred_rel_inds': rels_i, 'obj_scores': obj_scores_i, 'rel_scores': pred_scores_i, } unique_cnames = get_unique_cnames(gt_entry, test) save_img(idx, recs, test, gt_entry, det_res, unique_cnames, save_dir) save_gt_graph(idx, test, gt_entry, det_res, unique_cnames, save_dir) save_pred_graph(idx, test, pred_entry, det_res, unique_cnames, save_dir, multi_pred=conf.multi_pred, n_pred=20)