示例#1
0
    def val(self):
        """
          Validation function during the train phase.
        """
        self.pose_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                # Forward pass.
                out = self.pose_net(data_dict)
                # Compute the loss of the val batch.
                loss_dict = self.pose_loss(out)

                self.val_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.runner_state['val_loss'] = self.val_losses.avg['loss']
            RunnerHelper.save_net(self, self.pose_net, val_loss=self.val_losses.avg['loss'])
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {0}\n'.format(self.val_losses.info(), batch_time=self.batch_time))
            self.batch_time.reset()
            self.val_losses.reset()
            self.pose_net.train()
示例#2
0
    def val(self):
        """
          Validation function during the train phase.
        """
        self.gan_net.eval()
        start_time = time.time()

        for j, data_dict in enumerate(self.val_loader):
            with torch.no_grad():
                # Forward pass.
                out_dict = self.gan_net(data_dict)
                # Compute the loss of the val batch.

            self.val_losses.update(
                out_dict['loss_G'].mean().item() +
                out_dict['loss_D'].mean().item(),
                len(DCHelper.tolist(data_dict['meta'])))
            # Update the vars of the val phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()

        RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg)

        # Print the log info & reset the states.
        Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                                loss=self.val_losses))
        self.batch_time.reset()
        self.val_losses.reset()
        self.gan_net.train()
示例#3
0
    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1

        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, solver_dict=self.configer.get('solver'))
            self.data_time.update(time.time() - start_time)
            # Forward pass.
            data_dict = RunnerHelper.to_device(self, data_dict)
            out = self.det_net(data_dict)
            loss_dict = self.det_loss(out)
            loss = loss_dict['loss'].mean()
            self.train_losses.update(loss.item(),
                                     len(DCHelper.tolist(data_dict['meta'])))

            self.optimizer.zero_grad()
            loss.backward()
            RunnerHelper.clip_grad(self.det_net, 10.)
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.runner_state['epoch'],
                            self.runner_state['iters'],
                            self.configer.get('solver', 'display_iter'),
                            RunnerHelper.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()
示例#4
0
    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.seg_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.

        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, warm_list=(0,), solver_dict=self.configer.get('solver'))
            self.data_time.update(time.time() - start_time)

            # Forward pass.
            data_dict = RunnerHelper.to_device(self, data_dict)
            out = self.seg_net(data_dict)
            # Compute the loss of the train batch & backward.
            loss_dict = self.loss(out)
            loss = loss_dict['loss']
            self.train_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0))
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get('solver', 'display_iter') == 0:
                Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t'
                         'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                         'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                         'Learning rate = {4}\tLoss = {3}\n'.format(
                         self.runner_state['epoch'], self.runner_state['iters'],
                         self.configer.get('solver', 'display_iter'), self.train_losses.info(),
                         RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.runner_state['iters'] % self.configer.get('solver.save_iters') == 0 \
                    and self.configer.get('local_rank') == 0:
                RunnerHelper.save_net(self, self.seg_net)

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0 \
                    and not self.configer.get('network.distributed'):
                self.val()

        self.runner_state['epoch'] += 1
示例#5
0
    def val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                # Forward pass.
                data_dict = RunnerHelper.to_device(self, data_dict)
                out = self.det_net(data_dict)
                loss_dict = self.det_loss(out)
                # Compute the loss of the train batch & backward.
                loss = loss_dict['loss'].mean()
                out_dict, _ = RunnerHelper.gather(self, out)
                self.val_losses.update(loss.item(),
                                       len(DCHelper.tolist(data_dict['meta'])))
                test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = out_dict[
                    'test_group']
                batch_detections = FastRCNNTest.decode(
                    test_roi_locs, test_roi_scores, test_indices_and_rois,
                    test_rois_num, self.configer,
                    DCHelper.tolist(data_dict['meta']))
                batch_pred_bboxes = self.__get_object_list(batch_detections)
                self.det_running_score.update(batch_pred_bboxes, [
                    item['ori_bboxes']
                    for item in DCHelper.tolist(data_dict['meta'])
                ], [
                    item['ori_labels']
                    for item in DCHelper.tolist(data_dict['meta'])
                ])

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self,
                                  self.det_net,
                                  iters=self.runner_state['iters'])
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}\n'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()
示例#6
0
    def val(self, data_loader=None):
        """
          Validation function during the train phase.
        """
        self.seg_net.eval()
        start_time = time.time()

        data_loader = self.val_loader if data_loader is None else data_loader
        for j, data_dict in enumerate(data_loader):
            data_dict = RunnerHelper.to_device(self, data_dict)
            with torch.no_grad():
                # Forward pass.
                out = self.seg_net(data_dict)
                loss_dict = self.loss(out)
                # Compute the loss of the val batch.
                out_dict, _ = RunnerHelper.gather(self, out)

            self.val_losses.update(
                {key: loss.item()
                 for key, loss in loss_dict.items()}, data_dict['img'].size(0))
            self._update_running_score(out_dict['out'],
                                       DCHelper.tolist(data_dict['meta']))

            # Update the vars of the val phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()

        self.runner_state['performance'] = self.seg_running_score.get_mean_iou(
        )
        self.runner_state['val_loss'] = self.val_losses.avg['loss']
        RunnerHelper.save_net(
            self,
            self.seg_net,
            performance=self.seg_running_score.get_mean_iou(),
            val_loss=self.val_losses.avg['loss'])

        # Print the log info & reset the states.
        Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                 'Loss = {0}\n'.format(self.val_losses.info(),
                                       batch_time=self.batch_time))
        Log.info('Mean IOU: {}\n'.format(
            self.seg_running_score.get_mean_iou()))
        Log.info('Pixel ACC: {}\n'.format(
            self.seg_running_score.get_pixel_acc()))
        self.batch_time.reset()
        self.val_losses.reset()
        self.seg_running_score.reset()
        self.seg_net.train()
示例#7
0
    def val(self, data_loader=None):
        """
          Validation function during the train phase.
        """
        self.gan_net.eval()
        start_time = time.time()

        data_loader = self.val_loader if data_loader is None else data_loader
        for j, data_dict in enumerate(data_loader):

            with torch.no_grad():
                # Forward pass.
                out_dict = self.gan_net(data_dict)
                # Compute the loss of the val batch.

            self.val_losses.update(out_dict['loss'].mean().item(),
                                   len(DCHelper.tolist(data_dict['meta'])))
            meta_list = DCHelper.tolist(data_dict['meta'])
            probe_features = []
            gallery_features = []
            probe_labels = []
            gallery_labels = []
            for idx in range(len(meta_list)):
                gallery_features.append(out_dict['featB'][idx].cpu().numpy())
                gallery_labels.append(meta_list[idx]['labelB'])
                probe_features.append(out_dict['featA'][idx].cpu().numpy())
                probe_labels.append(meta_list[idx]['labelA'])

            rank_1, vr_far_001 = FaceGANTest.decode(probe_features,
                                                    gallery_features,
                                                    probe_labels,
                                                    gallery_labels)
            Log.info('Rank1 accuracy is {}'.format(rank_1))
            Log.info('VR@FAR=0.1% accuracy is {}'.format(vr_far_001))
            # Update the vars of the val phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()

        RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg)

        # Print the log info & reset the states.
        Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                                loss=self.val_losses))
        self.batch_time.reset()
        self.val_losses.reset()
        self.gan_net.train()
示例#8
0
    def val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                # Forward pass.
                out_dict = self.det_net(data_dict)

                # Compute the loss of the val batch.
                loss = out_dict['loss'].mean()
                self.val_losses.update(loss.item(),
                                       len(DCHelper.tolist(data_dict['meta'])))

                batch_detections = YOLOv3Test.decode(
                    out_dict['dets'], self.configer,
                    DCHelper.tolist(data_dict['meta']))
                batch_pred_bboxes = self.__get_object_list(batch_detections)

                self.det_running_score.update(batch_pred_bboxes, [
                    item['ori_bboxes']
                    for item in DCHelper.tolist(data_dict['meta'])
                ], [
                    item['ori_labels']
                    for item in DCHelper.tolist(data_dict['meta'])
                ])

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self,
                                  self.det_net,
                                  iters=self.runner_state['iters'])
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()
示例#9
0
    def _init_model(self):
        self.gan_net = self.model_manager.gan_model()
        self.gan_net = RunnerHelper.load_net(self, self.gan_net)

        self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.seg_data_loader.get_trainloader()
        self.val_loader = self.seg_data_loader.get_valloader()
 def _init_model(self):
     # torch.multiprocessing.set_sharing_strategy('file_system')
     self.det_net = self.det_model_manager.object_detector()
     self.det_net = RunnerHelper.load_net(self, self.det_net)
     self.optimizer, self.scheduler = Trainer.init(
         self._get_parameters(), self.configer.get('solver'))
     self.train_loader = self.det_data_loader.get_trainloader()
     self.val_loader = self.det_data_loader.get_valloader()
     self.det_loss = self.det_model_manager.get_det_loss()
示例#11
0
    def test(self, test_dir, out_dir):
        for _, data_dict in enumerate(self.test_loader.get_testloader(test_dir=test_dir)):
            data_dict['testing'] = True
            data_dict = RunnerHelper.to_device(self, data_dict)
            out_dict = self.det_net(data_dict)
            meta_list = DCHelper.tolist(data_dict['meta'])
            test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = out_dict['test_group']
            batch_detections = self.decode(test_roi_locs, test_roi_scores, test_indices_and_rois,
                                           test_rois_num, self.configer, meta_list)
            for i in range(len(meta_list)):
                ori_img_bgr = ImageHelper.read_image(meta_list[i]['img_path'], tool='cv2', mode='BGR')
                json_dict = self.__get_info_tree(batch_detections[i])
                image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(), json_dict,
                                                           conf_threshold=self.configer.get('res', 'vis_conf_thre'))
                ImageHelper.save(image_canvas,
                                 save_path=os.path.join(out_dir, 'vis/{}.png'.format(meta_list[i]['filename'])))

                Log.info('Json Path: {}'.format(os.path.join(out_dir, 'json/{}.json'.format(meta_list[i]['filename']))))
                JsonHelper.save_file(json_dict,
                                     save_path=os.path.join(out_dir, 'json/{}.json'.format(meta_list[i]['filename'])))
示例#12
0
    def __init__(self, configer):
        self.configer = configer
        self.runner_state = dict()

        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = DictAverageMeter()
        self.val_losses = DictAverageMeter()
        self.cls_model_manager = ModelManager(configer)
        self.cls_data_loader = DataLoader(configer)
        self.running_score = ClsRunningScore(configer)

        self.cls_net = self.cls_model_manager.get_cls_model()
        self.solver_dict = self.configer.get('solver')
        self.cls_net = RunnerHelper.load_net(self, self.cls_net)
        self.optimizer, self.scheduler = Trainer.init(self._get_parameters(),
                                                      self.solver_dict)
        self.train_loader = self.cls_data_loader.get_trainloader()
        self.val_loader = self.cls_data_loader.get_valloader()
        self.loss = self.cls_model_manager.get_cls_loss()
示例#13
0
    def val(self):
        """
          Validation function during the train phase.
        """
        self.cls_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                # Forward pass.
                data_dict = RunnerHelper.to_device(self, data_dict)
                out = self.cls_net(data_dict)
                loss_dict = self.loss(out)
                out_dict, label_dict, _ = RunnerHelper.gather(self, out)
                self.running_score.update(out_dict, label_dict)
                self.val_losses.update(
                    {key: loss.item()
                     for key, loss in loss_dict.items()},
                    data_dict['img'].size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self, self.cls_net)
            # Print the log info & reset the states.
            Log.info('Test Time {batch_time.sum:.3f}s'.format(
                batch_time=self.batch_time))
            Log.info('TestLoss = {}'.format(self.val_losses.info()))
            Log.info('Top1 ACC = {}'.format(
                RunnerHelper.dist_avg(self,
                                      self.running_score.get_top1_acc())))
            Log.info('Top3 ACC = {}'.format(
                RunnerHelper.dist_avg(self,
                                      self.running_score.get_top3_acc())))
            Log.info('Top5 ACC = {}'.format(
                RunnerHelper.dist_avg(self,
                                      self.running_score.get_top5_acc())))
            self.batch_time.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.running_score.reset()
            self.cls_net.train()
示例#14
0
 def _init_model(self):
     self.pose_net = self.pose_model_manager.get_pose_model()
     self.pose_net = RunnerHelper.load_net(self, self.pose_net)
     self.pose_net.eval()
示例#15
0
 def _init_model(self):
     self.gan_net = self.model_manager.gan_model()
     self.gan_net = RunnerHelper.load_net(self, self.gan_net)
     self.gan_net.eval()
示例#16
0
 def _init_model(self):
     self.det_net = self.det_model_manager.object_detector()
     self.det_net = RunnerHelper.load_net(self, self.det_net)
     self.det_net.eval()