def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) batch_idx = torch.arange(N, device=device)[:, None] box_regression = box_regression[batch_idx, topk_idx] image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] proposals = self.box_coder.decode(box_regression.view(-1, 4), concat_anchors.view(-1, 4)) proposals = proposals.view(N, -1, 4) result = [] for proposal, score, im_shape in zip(proposals, objectness, image_shapes): boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result
def forward_for_single_feature_map( self, anchors, box_cls, box_regression): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ device = box_cls.device N, _, H, W = box_cls.shape A = box_regression.size(1) // 4 C = box_cls.size(1) // A # put in the same format as anchors box_cls = permute_and_flatten(box_cls, N, A, C, H, W) box_cls = box_cls.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) box_regression = box_regression.reshape(N, -1, 4) num_anchors = A * H * W candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n) results = [] for per_box_cls, per_box_regression, per_pre_nms_top_n, \ per_candidate_inds, per_anchors in zip( box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors): # Sort and select TopN # TODO most of this can be made out of the loop for # all images. # TODO:Yang: Not easy to do. Because the numbers of detections are # different in each image. Therefore, this part needs to be done # per image. per_box_cls = per_box_cls[per_candidate_inds] per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_candidate_nonzeros = \ per_candidate_inds.nonzero()[top_k_indices, :] per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] per_class += 1 detections = self.box_coder.decode( per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4) ) boxlist = BoxList(detections, per_anchors.size, mode="xyxy") boxlist.add_field("labels", per_class) boxlist.add_field("scores", per_box_cls) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) return results